• Title/Summary/Keyword: Improved Shape

Search Result 1,610, Processing Time 0.023 seconds

A Study On The Stator Slot Shape Design of BLDC Motor (BLDC 모터 고정자 슬롯 형상설계에 관한 연구)

  • Han, Sang-Rog;Lee, Kang-Yeon;Jeong, Byeong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.41-49
    • /
    • 2015
  • In this paper, we studied an optimal design and efficiency improvement of the BLCD motor used in home electronic appliance. The number of stator slots is chosen depending on the rotor poles, phase number, and the winding configuration. In general, a fractional slots/pole design is preferred to minimize cogging torque. To reduce the winding resistance, we reduced the coil length and we improved the coil space factor. We proposed three types of stator slot shape design for the optimal BLDC motor design. One of them, U-type slot shape is a best optimal design, it proved by the simulated and tested. Optimal design of essential parameters aiming at high winding factor are presented to create for a high-quality system implementation. Design analysis is verified by testing and building a prototype motor.

A Robust Content-Based Image Retrieval Technique for Distorted Query Image (변형된 질의 영상에 강한 내용 기반 영상 검색 기법)

  • 김익재;이제호;권용무;박상희
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.74-83
    • /
    • 1997
  • We have proposed a composite feature measure which combines the color and shape features of an image for image retrieval. We improved the performance of retrieval based on the efficient color quantization using the Lloyd-Max quanizer and on the Histogram matrix matching method which considers the spatial correlation of quantized color group. We also supplemented the color information using shape information with the Improved Moment Invarlants. We have tested our technique on Image database consisting of 200 actual trademark images. Our experimental results showed that our approach improved the performance compared to the previous method under the various situations such as rotation images, translation images, noise added images, gamma corrected images and so on. The efficiency of retrieval is found to be very high and experimental results are

  • PDF

Using Magnetic Quadrupoles in Cathode-Ray Tubes

  • Sluyterman, A.A.S.
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.30-34
    • /
    • 2002
  • CRTs can be improved by means of magnetic quadrupoles. Areas of improvement are convergence, spot shape, image-flatness and space charge compensation.

Performance Analysis and Improvement of Array Shape Estimation for SONAR Systems (소나 시스템을 위한 어레이 형상 추정 기법의 성능 비교 및 개선)

  • 박희영;김인익;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.12-16
    • /
    • 2001
  • To analyze the performance of array shape estimation techniques using auxiliary sensors, the appropriate number and the positions of auxiliary sensors are investigated. Also, a post-processing technique based on spline interpolation is proposed to improve the performance of array shape estimation. The simulation results showed that when auxiliary sensors are arranged uniformly, the performance of shape estimation is better than other arrangements of auxiliary sensors. Also, the proposed post-processing technique improved the performance of the existing shape estimation method, such as Kalman filter method.

  • PDF

Boundary-Based Shape Design Sensitivity Analysis of Elastostatics Problems (정탄성학 문제에서 경계 기반 형상설계 민감도 해석)

  • Won Jun-Ho;Choi Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.149-156
    • /
    • 2006
  • A boundary-based design sensitivity analysis(DSA) technique is proposed for addressing shape optimization issues in the elastostatics problems. Sensitivity formula is derived based on the continuum formulation in a boundary integral form, which consists of the boundary solutions and shape variation vectors. Though the boundary element method(BEM) has been mainly used to obtain the boundary solution, the FEM is used in this paper because this is much more popular, and has greatly improved meshing and computing power recently. The advantage of the boundary DSA is that the shape variation vectors, which are also known as design velocity fields, are needed only on the boundary. Then, the step for determining the design velocity field over the whole domain, which was necessary in the domain-based DSA, is eliminated, making the process easy to implement and efficient. Problem of fillet design is chosen to illustrate the efficiency of the proposed method. Accuracy of the sensitivity is good with this method even by employing the free mesh for the FE analysis.

Shape Optimization for Enhancing the Performance of an Inducer for the Main Hydraulic Pump in a Rotary Wing Aircraft (회전익 항공기 주유압펌프용 인듀서 성능 향상을 위한 형상최적설계)

  • Kim, Hyogyeum;Heo, Hyeungseok;Park, Youngil;Lee, Changdon
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, in order to prevent cavitation in a variable swash-plate type hydraulic pump, a basic model impeller has been applied to a new pump, and the impeller shape has been optimized through flow analysis. Based on the analysis results, we could propose an impeller shape with high efficiency and low possibility of cavitation in comparison with the basic model. The simplification of the basic shape of the impeller of the hydraulic pump was performed in three parts in the order of hub shape, wing, and curvature, and eight design parameters were defined to satisfy the design requirement. Compared with the initial model of the impeller, when the differential pressure of the optimum model increased, the efficiency was improved. It achieved the goal of design improvement because cavitation did not occur under the rated operating conditions.

Shape Memory Polymer Nanocomposites (형상 기억 고분자 나노 복합 소재)

  • Hong, Jin-Ho;Yun, Ju-Ho;Kim, Il;Shim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.188-198
    • /
    • 2010
  • The term 'shape memory polymers (SMPs)' describes a class of polymers which can remember the original shape and recover from deformed to its original shape by the applied stimuli, e.g., heat, electricity, magnetic field, light, etc. SMPs are classified as one of the 'smart polymers' and have great potentials as high-value-added materials. Especially, low thermal, electrical, and mechanical properties of SMPs can be improved by incorporating the various fillers. This paper aims to review the SMPs and their basic principles, and the trends of the development of SMPs nanocomposites.

$\beta$-Shape and $\beta$-Complex for the Structure Analysis of Molecules

  • Seo, Jeong-Yeon;Kim, Dong-Uk;Cho, Young-Song;Ryu, Joong-Hyun;Kim, Deok-Soo
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.91-101
    • /
    • 2007
  • To understand the structure of molecules, various computational methodologies have been extensively investigated such as the Voronoi diagram of the centers of atoms in molecule and the power diagram for the weighted points where the weights are related to the radii of the atoms. For a more improved efficiency, constructs like an $\alpha$-shape or a weighted $\alpha$-shape have been developed and used frequently in a systematic analysis of the morphology of molecules. However, it has been recently shown that $\alpha$-shapes and weighted $\alpha$-shapes lack the fidelity to Euclidean distance for molecules with polysized spherical atoms. We present the theory as well as algorithms of $\beta$-shape and $\beta$-complex in $\mathbb{R}^3$ which reflects the size difference among atoms in their full Euclidean metric. We show that these new concepts are more natural for most applications and therefore will have a significant impact on applications based on particles, in particular in molecular biology. The theory will be equivalently useful for other application areas such as computer graphics, geometric modeling, chemistry, physics, and material science.

Fast Structure Recovery and Integration using Improved Scaled Orthographic Factorization (개선된 직교분해기법을 사용한 빠른 구조 복원 및 융합)

  • Park, Jong-Seung;Yoon, Jong-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.303-315
    • /
    • 2007
  • This paper proposes a 3D structure recovery and registration method that uses four or more common points. For each frame of a given video, a partial structure is recovered using tracked points. The 3D coordinates, camera positions and camera directions are computed at once by our improved scaled orthographic factorization method. The partially recovered point sets are parts of a whole model. A registration of point sets makes the complete shape. The recovered subsets are integrated by transforming each coordinate system of the local point subset into a common basis coordinate system. The process of shape recovery and integration is performed uniformly and linearly without any nonlinear iterative process and without loss of accuracy. The execution time for the integration is significantly reduced relative to the conventional ICP method. Due to the fast recovery and registration framework, our shape recovery scheme is applicable to various interactive video applications. The processing time per frame is under 0.01 seconds in most cases and the integration error is under 0.1mm on average.

  • PDF

Static, Buckling and Free Vibration Analyses of Fibrous Composite Plate using Improved 8-Node Strain-Assumed Finite Formulation by Direct Modification (직접수정된 8절점 가정변형률 유한요소를 이용한 복합적층판의 정적, 좌굴 및 자유진동 해석)

  • Park, Won-Tae;Chun, Kyoung-Sik;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.107-114
    • /
    • 2004
  • In this paper, a simple improved 8-node finite element for the finite element analysis of fibrous composite plates is presented by using the direct modification. We drive explicit expressions of shape functions for the 8-node element with bilinear element geometry, which is modified so that it can represent any quadratic fields in Cartesian coordinates. The refined first-order shear deformation theory is proposed, which results in parabolic through-thickness distribution of the transverse shear strains and stresses from the formulation based on the third-order shear deformation theory. It eliminates the need for shear correction factors in the first-order theory. This finite element is further improved by combined use of assumed strain, modified shape function, and refined first-order theory. To show the effectiveness of our simple modification on the 8-node finite elements, numerical studies are carried out the static, buckling and free vibration analysis of fibrous composite plates.