• Title/Summary/Keyword: Imprint Process

Search Result 118, Processing Time 0.032 seconds

Nano Patterning Functional Polymers Using Nano-imprint Technique

  • Gwon, Hyeon-Geun;Lee, Gyu-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.430.2-430.2
    • /
    • 2014
  • Previous studies to enhance optical properties of opto-electronic devices involve patterning of inorganic materials. Patterning of inorganic material usually encompasses vacuum process that hinders productivity and increases cost. In this research, we successfully formed nano patterns with polymer matrix and fabricated photonic crystals. This process is anticipated to increase the performance of opto-electronic devices without any vacuum process. Moreover, nano imprint technology reduces cost and bolsters productivity.

  • PDF

LCD Glass strain Simulation For Large Size Imprint Equipment (대면적 임프린트 장비를 위한 LCD Glass 변형 시뮬레이션 연구)

  • Song, Young-Joong;Shin, Dong-Hoon;Im, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1626-1631
    • /
    • 2007
  • The purpose of the study is to simulate the displacement of the LCD glass during process of a large size imprint. During this process, a small temperature variation makes thermal stress, which causes the horizontal variation of mold and glass. During alignment process to fix the LCD glass on a alignment stage, the vertical displacement is made by the absorption pressure and the shear stress. This study simulates the horizontal displacement of mold and glass due to temperature variation, the vertical displacement depending on the shape of absorption surface fixing the LCD glass in the alignment process, and the horizontal and vertical displacement which occurs in the LCD glass at the alignment process. Algor which is a FEM code for a framework simulation was applied. Temperature variation above ${\pm}$ $0.1^{\circ}C$ on mold and glass causes the horizontal displacement of 150nm due to thermal expansion. The vertical displacement due to the circular is ten times of the case of rectangular absorption nozzle. The displacement of the LCD glass in the alignment process is about 49nm.

  • PDF

Variation of a Triangular Pattern Shape due to Shrinkage in the Repeated UV Imprint Process (반복적인 UV 임프린트 공정에서 수축에 따른 삼각 단면을 가진 패턴의 형상 변화)

  • Jeong, Jiyun;Choi, Su Hyun;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.67-73
    • /
    • 2020
  • Shrinkage is inevitable in the curing of resins during the nanoimprint process. The degree of shrinkage that occurs as the resin transforms from a viscous liquid to solid differs depending on the type of resin. However, if the cured material is repeatedly cured using the same material, constant shrinkage can be confirmed. In this study, the pattern of change was observed by repeatedly performing the nanoimprint process using a resin with a constant shrinkage rate. The observed pattern for the change of shape was made using a triangular pyramid-shaped aluminum master mold and a flexible replica mold made from the master. Shrinkage that results from the nanoimprint process occurs linearly in the longitudinal direction of the pattern and can be predicted by simple calculations. The change of the pattern due to shrinkage occurred as expected. If the shrinkage rate remains constant, various patterns can be manufactured with high accuracy by correcting these changes before producing a specific shape. This study confirms that the pattern of the desired angle can be obtained by performing the repeated imprint without having to manufacture a master mold.

Fabrication of Nanometer-sized Pattern on PMMA Plate Using AAO Membrane As a Template for Nano Imprint Lithography (AAO 나노기공을 나노 임프린트 리소그래피의 형틀로 이용한 PMMA 나노패턴 형성 기술)

  • Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.420-425
    • /
    • 2008
  • PMMA light guiding plate with nano-sized pattern was fabricated using anodized aluminum oxide membrane as a template for nano imprint lithography. Nano-sized pore arrays were prepared by the self-organization processes of the anodic oxidation using the aluminum plate with 99.999% purity. Since the aluminum plate has a rough surface, the aluminum plate with thickness of 1mm was anodized after the pre-treatments of chemical polishing, and electrochemical polishing. The surface morphology of the alumina obtained by the first anodization process was controlled by the concentration of electrochemical solution during the first anodization. The surface morphology of the alumina was also changed according to temperature of the solution during chemical polishing performed after first anodization. The pore widening process was employed for obtaining the one-channel with flat surface and height of the channel because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. It is shown from SPM results that the nano-sized pattern on PMMA light guiding plate fabricated by nano imprint lithography method was well transferred from that of anodized aluminum oxide template.

Manufactured Flexible Active Matrix Backplanes using Self-Alighed Imprint Lithography (SAIL)

  • Kwon, Oh-Seung;Marcia-Almanza-Workman, Marcia-Almanza-Workman;Braymen, Steve;Cobene, Robert;Elder, Richard;Garcia, Robert;Gomez-Pancorbo, Fernando;Hauschildt, Jason;Jackson, Warren;Jam, Mehrban;Jeans, Albert;Jeffrey, Frank;Junge, Kelly;Kim, Han-Jun;Larson, Don;Luo, Hao;Maltabes, John;Mei, Ping;Perlov, Craig;Smith, Mark;Stieler, Dan;Taussig, Carl
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.138-141
    • /
    • 2009
  • Progress in the development of a fully roll-to-roll selfaligned imprint process for producing active matrix backplanes with submicron aligned features on flexible substrates is reported. High performance transistors, crossovers and addressable active matrix arrays have been designed and fabricated using imprint lithography. Such a process has the potential of significantly reducing the costs of large area displays. The progress, current status and remaining issues of this new fabrication technology are reported.

  • PDF

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates (알루미늄 박 및 플레이트 표면 미세 패터닝을 위한 상온 임프린팅 기술)

  • Tae Wan Park;Seungmin Kim;Eun Bin Kang;Woon Ik Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-to-microscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 ㎛ to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.

Fabrication for Optical Layer and Packaging Technology of Optical PCB (광 PCB의 광 회로층 제작 및 패키징 기술)

  • Kim, Taehoon;Huh, Seok-Hwan;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Recently, data throughput of smart electric devices increases dramatically. There is a great interest in a new technology which exceeds the limit of electrical transmission method. Optical PCB can supplement the weakness of electrical signal processing, the research for optical PCB is very active. In this paper, we propose the thermal imprint lithography process to fabrication optical layer of optical PCB and experiment to optimize the process conditions. We confirm process time, pressure, process temperature, demolding temperature and fabricate optical interconnection structure which has $45^{\circ}$ tilted mirror surface for confirm the interconnection efficiency.

Design and Fabrication of Micro Patterns on Flexible Copper Clad Laminate (FCCL) Using Imprinting Process (임프린트 공정을 이용한 연성동박적층필름(FCCL)의 마이크로 패턴 제작)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.771-775
    • /
    • 2015
  • In this paper, we designed and fabricated low cost imprinting process for micro patterning on FCCL (flexible copper clad laminate). Compared to conventional imprinting process, developed fabrication method processing imprint and UV photolithography step simultaneously and it does not require resin etch process and it can also reduce the fabrication cost and processing time. Based on proposed method, patterns with $10{\mu}m$ linewidth are fabricated on $180mm{\times}180mm$ FCCL. Compared to conventional methods using LDI (laser direct imaging) equipment that showed minimum line with $10{\sim}20{\mu}m$, proposed method shows comparable pattern resolution with very competitive price and shorter processing time. In terms of mass production, it can be applied to fabrication of large-area low cost applications including FPCB.