• Title/Summary/Keyword: Implant screw loosening

Search Result 134, Processing Time 0.02 seconds

Study of screw loosening in cementation type implant abutment

  • Hwang, Bo-Yeon;Kim, Yung-Soo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.6
    • /
    • pp.765-781
    • /
    • 2000
  • The purpose of this study was to compare the screw loosening characteristics of three avail-able cementation type abutments: one-piece cementation type abutment; two-piece cementation type abutment using titanium abutment screw; two-piece cementation type abutment using gold abutment screw. Two implant supported three-unit superstructures were fabricated using a pair of 3 kinds of abutments for each experimental model. Cyclic loading was applied on the specimen, and made to stop when the superstructure showed movement over threshold range. The loaded cycle was counted until the machine stopped. Frequency analysis was done to measure the change of natural frequency before and after the application of cyclic load and to find the effect of screw loosening on the change of natural frequency. The specimen assembly was modeled to perform the finite element analysis to see the distribution of the stress induced by the application of preload over the screw joint and to compare the pattern of the distribution of stress induced by the external force with the change of the preload condition. The following results were obtained: 1. The failure loading cycle of two-piece cementation type abutment using gold screw was significantly greater than those of the other groups. 2. One-piece cementation type abutment applied to multi-unit restoration case did not show greater resistance to screw loosening compared to two-piece cementation type abutments. 3. Frequency analysis showed decrease in natural frequency when screw loosening occured.

  • PDF

A VITRO STUDY OF RETAINED SCREW STABILITY BY VARIOUS CONNECTION DESIGNS BETWEEN FIXTURE AND ABUTMENT IN IMPLANT DENTISTRY (임플란트 고정체와 지대주 연결 형태의 차이에 따른 유지 나사 안정성에 대한 연구)

  • Yang Jae-Sik;Vang Mong-Sook;Jo Gyu-Jong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.83-93
    • /
    • 2004
  • Statement of problem : Since the concept of osseointegrated dental implant by $Br{\aa}nemark$ et al was first applied to mandibular full edentulous patients. Recently it is considerated the first treatment option on missing teeth. A common problem associated with dental implant restorations is loosening of screws that retain the prosthesis to the abutment and the abutment to the implant fixture. Purpose : This study is to examine the influence on screw loosening of implant-abutment designs. Material and methods : External hex, cone screw, beveled hex, cam cylinder, cylinder hex by means of evaluating the loosening torques, with respect to a range of tightening torques after repeated loading. Result : 1. Cone screw, beveled hex groups are the highest initial tightening rate and cylinder hex, external hex groups are the lowest initial tightening rate (p < 0.05). 2. Cone screw groups are the highest after repeated loading tightening rate and cylinder hex groups are lowest after repeated loading tightening rate(p < 0.05). 3. Cone screw groups have the highest initial stability and anal stability. 4. All groups are decreased tightening rate after repeated loading.

The incidence of the abutment screw loosening and its affecting factors in posterior implant restorations (구치부 임플란트 고정성 수복물에서의 지대주 나사 풀림 현상과 이에 영향을 미치는 요인)

  • Hong, Su-Jung;Bae, Jung-Yoon;Kim, Hyun-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.212-217
    • /
    • 2018
  • Purpose: This study was to assess clinically the incidence of abutment screw loosening of posterior implant-supported fixed prosthesis and its affecting factors. Materials and methods: 391 implant-supported crowns restored from January 2013 to January 2016 were included in this study. All restorations were fabricated with either a single crowns or a splinted crown, and cemented with temporary cement. The incidence of abutment screw loosening is investigated and gender, restoration position, opposing teeth, restoration type, abutment connection type were assessed as possible factors affecting abutment screw loosening. Results: During the observation period (2 - 5 years), abutment screw loosening was found in 29 restorations (7.4%). It took 3 to 48 months (means 19.5 months) to loose the screw, and three of these implants were fractured. Among the factors considered, there were statistically significant differences at abutment screw loosening rate between molar group (9.4%) and premolar group (2.6%) (P<.019). According to the type of opposing teeth, there were statistically significant differences between nature teeth (74.7%) and implant (25.0%), removable denture (3%) (P<.019). The other possible factors did not have a significant effect on loosening of the abutment. Conclusion: The incidence of abutment screw loosening in posterior restoration was 7.4%. Abutment screw loosening were more likely to occur in molars group than premolar group, and according to the opposing teeth, there were the greatest frequency in nature teeth than implant and removal denture. There was a statistically significant difference.

Biomechanical Complications : Fracture and Screw loosening (Biomechanical Complications : 파절과 나사풀림)

  • Kim, Tae in
    • The Journal of the Korean dental association
    • /
    • v.53 no.5
    • /
    • pp.307-317
    • /
    • 2015
  • Although the long-term success of osseointegrated endosseous implants for the support of fixed dental prostheses has been reported, the increasingly widespread use of implant-supported prostheses has led to problems associated with their structural integrity. The most common biomechanical complications observed in dental implant treatment are fracture and screw loosening. The nature of loosening or fracture of dental implant components is complex, since it involves fatigue, fitness, and varied chewing patterns and loads. To assess the service life of the components of the prosthetic system, a knowledge of the loads transmitted through the system is necessary. Design of the final restoration and occlusion in relation to the geometry of a prosthetic restoration has a great influence on the mechanical loading of the implant. It is proposed that control of force in oral cavity may play a larger role in failures than previously believed. Based on theoretic consideration and clinical experiences with dental implant, this article gives simple guidelines for controlling these loads.

A STUDY ON SURFACE OF VARIOUS ABUTMENT SCREWS

  • Park Chan-Ik;Chung Chae-Heon;Choi Han-Cheol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.351-359
    • /
    • 2003
  • Statement of problem: Regardless of any restoration, most of case, we used in screw connection between abutment and implant. For this reason, implant screw loosening has been remained problem in restorative practices. Purpose: The purpose of this study was to compare surface of coated/plated screw with titanium and gold alloy screw and to evaluate physical property of coated/plated material after scratch test in FESEM investigation Material and methods: GoldTite, titanium screw provided by 3i (Implant Innovation, USA) and TorqTite, titanium screw by Steri-Oss (Nobel Biocare, USA) and gold screw, titanium screw by AVANA (Osstem Implant, korea) - were selected for this study. Each abutment screw surface was observed at 100 times, and then screw crest, root, and slope were done more detailed numerical value, at 1000 times with FESEM. A micro-diamond needle was also prepared for the scratch test. Each abutment screw was fixed, micro-diamond scratch the surface of head region was made at constant load and then was observed central region and periphery of fine trace through 1000 times with FESEM. Results: The surface of GoldTite was smoother than that of other kinds of screw and had abundant ductility and malleability compared with titanium and gold screw. The scratch test also showed that teflon particles were exfoliated easily in screw coated with teflon. Titanium screw had a rough surface and low ductility. Conclusion: It was recommended that the clinical use of gold-plated screw would prevent a screw from loosening. CLINICAL IMPLICATIONS Clinical use of gold-plated screw would prevent a screw from loosening because it had abundant ductility and malleability compared with titanium and gold screw.

A Study on the Screw Loosening Torque According to the Type of Tightening the Implant Fixture and Abutment (임플란트 고정체와 지대주의 체결방식에 따른 스크류 풀림토크에 관한연구)

  • Park, Soo-Chul;Kim, Hong-Sik;Ham, Sung-Won
    • Journal of Technologic Dentistry
    • /
    • v.35 no.3
    • /
    • pp.201-207
    • /
    • 2013
  • Purpose: In this study, the loosening torque test was conducted with three implant products that are produced, approved and sold in Korea, which are manufactured in different fixture and abutment tightening methods (internal submerged type, internal morse taper type, and external type) to examine the loosening torque of the screw according to the method of tightening the implant fixture and abutment. Methods: In the loosening torque test, the three types of fixtures and abutments with different tightening methods were tightened by rotating them clockwise with a $30N{\cdot}cm$ force using a driver equipped with an electric torque meter. The results of the test are as follows. Results: The loosening torque values of the internal submerged type, internal morse taper type and external type implants were $24.10{\pm}0.742N{\cdot}cm$, $29.10{\pm}1.710N{\cdot}cm$, and $26.60{\times}1.636N{\cdot}cm$, respectively. Conclusion: The screw loosening torque values of the three fixture and abutment tightening methods were analyzed via Kruskal Wallis test layout, and they were significantly different (p<0.05).

A Study on the DLC Film Coating for Improving Loosening Torque of Dental Implant Screw (치과 임플란트 스크루 풀림토크 개선용 DLC 박막 코팅에 관한 연구)

  • Jeong, Woon-Jo;Cho, Jae-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1375-1381
    • /
    • 2018
  • In this paper, we studied coatings of the DLC thin film for improving loosening torque of dental implant screw. We used a filtered arc ion plating process which can realize the most dense DLC layer by coating the DLC thin film on the surface of the dental abutment screw. It showed both hardness comparable to diamond and low friction coefficient similar to graphite, and to improve the loosening phenomenon by increasing the screw tightening force Cr/CrN, Ti/TiN or Ti/TiN/Cr/CrN buffer layers were deposited for 5 to 10 minutes to improve the adhesion of the DLC thin film to the surface of the Ti (Gr.5), and then the DLC thin film was coated for about 15 minutes. As a result, the Cr/CrN buffer layer exhibited the highest hardness of 29.7 GPa, the adhesion of 18.62N on average, and a very low coefficient of friction of less than 0.2 as a whole. And we measured loosening torque after one million times with masticatory movement simulator. As a result, the values of the coated screw loosening torque were clearly higher than those of the uncoated screw. From this, it was found that the DLC coating was effective methods improving the loosening torque. In addition, it was confirmed that the cytotoxicity test and cell adhesion test showed high biocompatibility.

Influence of the implant abutment types and the dynamic loading on initial screw loosening

  • Kim, Eun-Sook;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • PURPOSE. This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS. Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at $30^{\circ}$ to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for $10^5$ cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (${\alpha}$=0.05). RESULTS. Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION. The abutment types did not have a significant influence on short term screw loosening. On the other hand, after $10^5$ cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not.

Characteristics of Abutment Screw Structure for Dental Implant (치과용 임플란트 지대주 나사 구조에 관한 연구)

  • Song, Jong-Beop;Choi, Il-kyung;Jung, Hyo-kyung;Kwon, Soon-Hong;Kwon, Soon-Gu;Park, Jong-Min;Kim, Jong-Soon;Jung, Sung-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.169-176
    • /
    • 2017
  • Dental implants are required to have biomechanical functions and biostability in order to perform authoring, pronunciation, and aesthetic functions in the oral cavity. In terms of biostability, pure titanium for medical have good biostability and no rejection in the alveolar bone. with appropriate strength in terms of strength as well as biocompatibility. In recent years, various surgical methods and devices have been developed to improve the convenience and safety of the procedure. However, as the number of procedures increases, the screw loosening of the abutment screw connecting the artificial root and the abutment There are many reports of artificial root and abutment fracture. Fig. 1 is an example of a case where the upper part of the abutment screw is arbitrarily modified to remove the abutment by the abutment fracture due to the loosening of the abutment screw. The fundamental cause of abduction of the abutment screw is caused by the slight movement due to the lowering of the retention force of the abutment screw. It is necessary to minimize loosening of the abutment screw to avoid problems such as fracture during the period of using the implant. The purpose of this study is to investigate the structure of the abutment screw to prevent the loosening of the abutment screw by forming 0.5mm slot.

Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading

  • Lee, Joo-Hee;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2018
  • PURPOSE. This study investigated the effects of abutment screw lengths on screw loosening and removal torque in external connection implants after oblique cyclic loading. MATERIALS AND METHODS. External connection implants were secured with abutment screws to straight abutments. The abutment-implant assemblies were classified into seven groups based on the abutment screw length, with each group consisting of five assemblies. A cyclic load of 300 N was applied at a $30^{\circ}$ angle to the loading axis until one million cycles were achieved. Removal torque values (RTVs) before and after loading, and RTV differences were evaluated. The measured values were analyzed using repeated measures of analysis of variance with the Student-Newman-Keuls multiple comparisons. RESULTS. All assemblies survived the oblique cyclic loading test without screw loosening. There was a significant decrease in the RTVs throughout the observed abutment screw lengths when the abutment-implant assemblies were loaded repeatedly (P<.001). However, the abutment screw length did not show significant difference on the RTVs before and after the experiment when the abutment screw length ranged from 1.4 to 3.8 mm (P=.647). CONCLUSION. Within the limit of this experiment, our results indicate that the abutment screw length did not significantly affect RTV differences after oblique cyclic loading when a minimum length of 1.4 mm (3.5 threads) was engaged. These findings suggest that short abutment screws may yield stable clinical outcomes comparable to long screws in terms of load resistance.