• Title/Summary/Keyword: Impeller Shape

Search Result 161, Processing Time 0.028 seconds

Development of CAM Automation Module(E-ICAM) for 5-axis Machining of Impeller (A Study on Configuration of Module) (임펠러의 5축 CAM 자동화 모듈(E-ICAM)의 개발 (모듈 구성에 관한 연구))

  • Jung, Hyoun-Chul;Hwang, Jong-Dae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.109-114
    • /
    • 2011
  • An impeller is difficult to machine because of severe collision due to the complex shape, overlapping and twisted shape that form impeller blades. So, most CAM software companies have developed CAM module for manufacturing impeller in addition to their CAM software. But it is not still easy for inexperienced users to machine impellers. The purpose of this paper is the development of automatic CAM module for manufacturing impeller(E-ICAM) which is based on visual basic language and it is used CATIA graphical environment in order to be easily machining impellers. Automatic CAM module for manufacturing of impellers generates tool path, and proposes recommended cutting condition according to the material of stock and tool. In addition, it has also included a post processor for 5-axis control machining. Therefore the user can easily machine impellers using this automation module.

Performance Characteristics of Side Channel Type Regenerative Pumps (사이드채널형 재생펌프의 성능 특성에 관한 실험적 연구)

  • Kang Shin-Hyoung;Lim Hyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.306-313
    • /
    • 2005
  • The performance of a regenerative pump is affected by many parameters, especially blade shape of impeller, leakage flow in the clearance and head losses at the inlet & outlet. An impeller with J-shape blade was designed and 5 times scale up model was tested at similarity conditions to evaluate the performance. Performance variations with clearance change were executed. The amounts of leakage flow through the clearance were estimated using the one-dimensional leakage flow models and analysis. Main leakage flow is generated through the gap between the impeller and casing. The inlet & outlet head losses were also estimated. Such corrections are very important to evaluate the final performance of the impeller and pump. Cavitation test was also performed at 1,200 rpm. NPSH of the regenerative pump was obtained and growth of cavity within blades was visualized.

Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis (15,000 마력급 원심식 압축기 임펠러 블레이드의 유체-구조 연성해석을 이용한 형상최적설계)

  • Kang, Hyun Su;Oh, Jeongsu;Han, Jeong Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.547-556
    • /
    • 2014
  • This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints.

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.

A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor

  • Kang, Hyun-Su;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a method for the multi-objective optimization of an impeller for a centrifugal compressor using fluid-structure interaction (FSI) and response surface method (RSM) was proposed. Numerical simulation was conducted using ANSYS CFX and Mechanical with various configurations of impeller geometry. Each design parameter was divided into 3 levels. A total of 15 design points were planned using Box-Behnken design, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of the DOE were used to find the optimal shape of the impeller. Two objective functions, isentropic efficiency and equivalent stress were selected. Each objective function is an important factor of aerodynamic performance and structural safety. The entire process of optimization was conducted using the ANSYS Design Xplorer (DX). The trade-off between the two objectives was analyzed in the light of Pareto-optimal solutions. Through the optimization, the structural safety and aerodynamic performance of the centrifugal compressor were increased.

Blade Shape Design of Mixed-flow Pump Impellers and Diffusers in a Fixed Meridional Geometry (자오면 고정 형상에서 사류펌프 임펠러 및 디퓨져 날개형상 설계)

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1203-1208
    • /
    • 2009
  • In this paper, the flow characteristics of the mixed-flow pump impellers and diffusers were numerically predicted by commercial CFD software and DOE(design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser in the mixed-flow pump. Geometric design variables were defined by the vane plane development which indicates the blade-angle distributions and length of the impeller and the diffusers. Firstly, the design optimization of the defined impeller geometric variables has been done. After that, the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Then design of the defined diffuser shape variables has been performed. The reason for the performance improvement was discussed by examining the flow characteristics through the diffuser.

  • PDF

A Parametric Study of Aerodynamic Noise in Centrifugal Compresso (원심압축기의 공력소음에 관한 파라미터 연구)

  • Sun, Hyosung;Lee, Soogab;Lee, Jungeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.129-134
    • /
    • 2005
  • This paper describes the influence of geometric parameters on the noise generation from a centrifugal compressor. From the analysis of noise measurements, it is observed that Blade Passing Frequency noise related to the rotating impeller is more important, and it is focused on the comparison of this discrete frequency noise according to the shape change. Navier-Stokes solver is used to simulate the flow-field of the impeller and the vaned diffuser, and time-dependent pressure data are calculated and Fourier-transformed to perform the near-field noise prediction. The effects of various geometry design variables such as the gap between the impeller and the diffuser, impeller shape variations on the near-field noise distribution are investigated.

Performance Characteristic of Regenerative Pumps (재생펌프의 성능 특성에 관한 실험적 연구)

  • Lim, Hyung-Soo;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.361-366
    • /
    • 2003
  • For regenerative pump performance test we made 5 times enlarged and 3 different kinds blade types impeller with similarity. Due to geometrical characteristic of regenerative pump, there are two kinds of groups which effect on performance of it. One is geometric shape of impeller blade and the other is clearance and inlet/outlet head loss. To study performance of regenerative pump with impeller shape changes, we tested it with reducing clearance. And we reconcile performance data in the case of zero clearance and zero inlet/outlet head loss. Finally we could verify the influence of each group.

  • PDF

Optimization of a Low Specific Speed Turbopump Impeller (낮은 비속도를 갖는 터보펌프의 임펠러형상 최적화에 관한 연구)

  • 조종현;조수용;조봉수
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.1-10
    • /
    • 2006
  • An optimization study on a small turbopump impeller operating at the low specific speed is conducted to obtain high output head at the impeller exit. Its specific speed in SI unit (RPM, m3/sec, m) is 4.0, and the outer diameter is 56mm. On the optimization, the outer diameter of the impeller is maintained constant to restrict the pump size, and an objective function of pressure head is maximized with eight design variables, which are related with designing an impeller shape. The response surface method is used to the optimization scheme, and the commercial code CFX-10 is applied for numerical analysis. The pressure head of the objective function obtained with an optimized impeller is increased by 9.7% compared with that obtained on an impeller designed with typically recommended design parameters. This increment is caused by reducing the recirculation region within the impeller passage.

Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane (자오면 형상을 고려한 원심압축기 임펠러 최적설계)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, shape optimization based on three-dimensional flow analysis has been performed for impeller design of centrifugal compressor. To evaluate the objective function of an isentropic efficiency, Reynolds-averaged Navier-Stokes equations are solved with SST (Shear Stress Transport) turbulence model. The governing equations are discretized by finite volume approximations. The optimization techniques based on the radial basis neural network method are used for the optimization. Latin hypercube sampling as design of experiments is used to generate thirty design points within design space. Sequential quadratic programming is used to search the optimal point based on the radial basis neural network model. Four geometrical variables concerning impeller shape are selected as design variables. The results show that the isentropic efficiency is enhanced effectively from the shape optimization by the radial basis neural network method.