• Title/Summary/Keyword: Impact fracture energy

Search Result 227, Processing Time 0.033 seconds

Effect of Shrinkage Defect on Fracture Impact Energy of A356 Cast Aluminum Alloy (A356 알루미늄 합금의 파단 충격에너지에 대한 수축공결함의 영향)

  • Chul, Hwang-Seong;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.34 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Internal defects, such as shrinkage during casting, cause stress concentrations and initiate cracking. Therefore, it is important to understand the effects of internal defects on the mechanical properties including the impact behavior. This study evaluates the effects of internal casting defects on the impact performance of A356 Al-alloy castings. The internal shrinkage defects in the casting impact specimen are scanned using an industrial Computed Tomography (CT) scanner, and drop impact tests are performed with varing impact velocities on the A356 casting aluminium specimen ($10mm{\times}10mm$ section area) in order to locate the fracture energy under an impact load. The specimens with defects with a diameter less than 0.35 mm exhibit equivalent fracture impact energies of approximately 32 J and those with a 1.7 mm diameter defect reduced the fracture impact energy by 35%.

The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test (計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF

Temperature Effects on Impact Fracture Mechanisms of Glass Fiber/Polypropylene Campsites (유리섬유/폴리프로필렌 복합재료의 충격파괴기구에 대한 온도효과)

  • KOH S. W.;Um Y. S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.314-319
    • /
    • 2004
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness GIC was performed by the impact test in this work The main goal of this work is to study effects of temperature in the impact test with glass fiber/polypropylene(GF/pp) composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of $60^{\circ}C\;to\;-50^{\circ}C$ by impact test. The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

Physical Properties of Organic- and Inorganic-Fiber Reinforced Portlandcement (유기 및 무기 섬유로 보강한 포트랜드 시멘트의 물성 연구)

  • Chang Pok-Kie;Kim Yun Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.690-695
    • /
    • 2004
  • In this study, inorganic (steel, asbestos and carbon) and organic (polyacryl and polyamide) fibers were used to investigate their reinforcing effects of the physical properties of Portland cement. From the load-displacement curve of each reinforced specimen, fracture strength, Young's module, fracture energy and fracture toughness were computed and compared with each other. In addition, the experiment of their impact toughness was carried out and compared with the fracture energy. For the improvement of fracture strength the inorganic (asbestos) fiber reinforcement was most effective, while the best reinforcing effect of impact toughness was achieved by organic (polyacryl) fiber. And steel fiber proved to be most adequate for improvement of both fracture strength and impact toughness. Steel fiber also showed the highest fracture energy and fracture toughness among all of the fibers.

An Evaluation of Notch Shpae for Estimation of Available $K_{1d}$ by Instrumented Charpy Impact Test (유효 $K_{1d}$ 산정을 위한 샬피 충격시험편의 노치형상에 관한 연구)

  • 우창기;강동명;이하성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.135-143
    • /
    • 1999
  • This investigation evaluates effects of notch depth, fatigue precrack length and side groove in impact specimen for estimation of a valid K1d by instrumented Charpy impact test. Specimen material is 6005-T6. for notch depth 2.0mm and 2.5mm specimens or within about 2mm fatigue precrack length with notch depth 2.0mm and 2.5mm specimens or within about 2mm fatigue precrack length with notch depth 2.0mm , dynamic fracture toughness [$K_{1d,(1)}$] obtained by crack initiation load($P_m$) should be used. Dynamic fracture toughness of side grooved specimens are overestimated to that of standard impact specimen about 15 %-20%. It is confirmed that the formula of dynamic fracture toughness obtained by impact absorbed energy is inappropriate for ductile materials.

  • PDF

A study on abrasive wear characteristics of side plate of FRP ship (온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.

Impact Toughness and Fracture Behavior in Non-Heat Treating Steels Containing Bainite (베이나이트 함유 비조질강의 충격인성 및 파괴거동)

  • Cho, Ki-Sub;Kwon, Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.4
    • /
    • pp.161-167
    • /
    • 2019
  • Impact toughness and fracture behavior were studied in five kinds of non-heat treating steels containing bainite; standard(0.25C-1.5Mn-0.5Cr-0.2Mo-0.15V), high V(0.3V), Ni(0.5Mn-2Ni), W(0.4W instead of Mo), and high C-Ni(0.35C-0.5Mn-2Ni) steels. The good hardness and impact toughness balance was exhibited in the $1100^{\circ}C$-rolled condition, while the impact toughness was deteriorated due to coarse grained microstructure in the $1200^{\circ}C$-rolled condition. The impact toughness decreased with increasing the hardness in all steels studied. The fracture behavior was also basically identical, that is, the fracture area was divided into 3 zones; shear and fibrous zone, fracture transition zone with ductile dimples and cleavage cracks, where the cracks initiate and grow to critical size, unstable cleavage fracture propagation zone. The energy absorbed for the critical crack formation through the plastic deformation inside the plastic zone in front of the notch root contributed to a mostly significant portion of the total impact energy.

Impact and Wear Behavior of Side Plate of FRP Ship (FRP선박 외판재의 충격 및 마모 거동)

  • Kim, H.J.;Kim, J.D.;Koh, S.W.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.123-128
    • /
    • 2009
  • The effects of temperature and initial crack length on the impact fracture behavior for the side plate material of FRP ship were investigated. And the effects of the counterpart roughness and sliding distance on the volumetric wear of same material were investigated as well. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decreasing the temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increasing the initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$. It is believed that sensitivity of notch on impact fracture energy were increased with decreasing the temperature of specimen. With increasing the sliding distance, the transition sliding distance, which displayed different aspect on the friction coefficient and the volumetric wear loss, were found out. Counterpart roughness had a big influence on the wear rate at running in period, however the effect of counterpart roughness became smaller with sliding speed increase in. Volumetric wear loss were increased with increasing the applied load and the counterpart roughness.

  • PDF

A study on the Impact Characteristics for Rubber Toughened polymeric Materials under Low Velocity Impact (고무보강 폴리머 재료의 저속 충격 해석)

  • 구본성;박명균;박세만
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.219-231
    • /
    • 2004
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on polymeric materials. An analysis method for rubber toughened PVC is suggested to evaluated critical dynamic strain energy release rates(G$_c$) from the Charpy impact tester was used to extract ancillary information concerning fracture parameters in additional to total fracture energies and maximum critical loads. The dynamic stress intensity factor KID was computed for varying amounts of rubber contents from the obtain maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact for PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.

  • PDF

A study on the Dynamic Fracture Toughness for Polymeric Materials (폴리머재료의 파괴인성치에 관한 연구)

  • 최영식;박명균
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.311-317
    • /
    • 2001
  • The notched Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy Impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF