• 제목/요약/키워드: Impact Test Data

검색결과 1,923건 처리시간 0.029초

충격공진을 이용한 콘크리트 상태 평가를 위한 주성분 분석의 적용 (Application of the Principal Component Analysis to Evaluate Concrete Condition Using Impact Resonance Test)

  • 윤영근;오태근
    • 한국안전학회지
    • /
    • 제34권5호
    • /
    • pp.95-102
    • /
    • 2019
  • Non-destructive methods such as rebound hardness method and ultrasonic method are widely studied for evaluating the physical properties, condition and damage of concrete, but are not suitable for detecting delamination and cracks near the surface due to various constraints of the site as well as the accuracy. Therefore, in this study, the impact resonance method was applied to detect the separation cracks occurring near the surface of the concrete slab and bridge deck. As a next step, the principal component analysis were performed by extracting various features using the FFT data. As a result of principal component analysis, it was analyzed that the reliability was high in distinguishing defects in concrete. This feature extraction and application of principal component analysis can be used as basic data for future use of machine learning technique for the better accuracy.

완구 안전검사 기준을 적용한 강아지 로봇의 낙하 해석 (Drop Simulation of Puppy Robot by Toys Safety Standards)

  • 정태은;김준기;신효철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.710-713
    • /
    • 2005
  • Many impact or drop test researches of home appliances are published, but those of toys cannot be found easily. External impacts are the primary causes of fracture of toys. For impact proof design, the finished product should pass an impact test after molding design. There are several international toy safety standards or requirements such as US CPSC(Consumer Product Safety Commission), ASTM F963-96a, EN71 and so on. The puppy robot which patrols around the house, namely, the watchdog was selected to investigate toy safety because it has considerable weight and outer panels are made of plastics. First the model of watchdog robot was obtained by 3 dimensional scan. Surface data can be generated from 3D polygon data of the watchdog. A reliable drop simulation method for the watchdog was established using Pam-crash program according to Korean toy safety standards. When there is a low impact allowance value, the molding design should be reinforced or changed. It was found that the maximum impact stress reaches the ultimate stress of panel material.

  • PDF

모자이크 패턴 전극 압전 페인트 센서를 이용한 충격 위치 검출 (Impact Localization Using Piezoelectric Paint Sensor with Mosaic Pattern Electrodes)

  • 강상현;강래형
    • 항공우주시스템공학회지
    • /
    • 제13권2호
    • /
    • pp.19-25
    • /
    • 2019
  • 구조물의 충격 위치 검출을 위해 본 연구그룹에서는 압전 페인트 센서를 연구하고 있다. 압전 페인트는 고주파 신호 및 충격에 민감한 특성으로 인하여 충격 감지에 사용할 수 있다. 또한, 압전 페인트 센서는 세라믹 센서가 적용될 수 없는 곡선 또는 복잡한 구조에 코팅될 수 있으며 외부 전원을 필요로 하지 않는다. 충격을 검출하기 위해 모자이크 패턴 전극을 시험편 위에 코팅하였고, 충격 신호는 충격이 발생한 전극부에서 얻을 수 있었다. 보다 더 정확한 충격 위치 검출을 위해서는 전극을 더 많은 부분으로 나누어 해당 전극부로부터 충격 데이터 수집이 필요하다. 본 연구에서는, 데이터 수집을 위하여 가볍고 저렴한 간단한 멀티채널 데이터 수집 시스템을 개발하였다. ARM Cortex-M3의 UART 통신을 이용하여 총 4채널의 데이터를 수집하였다.

승객 상해치 감소를 위한 측면 에어백의 역할 (Role of Side Impact Airbag in Order to Reduce Passenger Injury Value)

  • 김동석;이명식
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.142-151
    • /
    • 1997
  • In order to reduce passenger injuries in side collisions, car makers are developing a side impact airbag system while Volvo has already adopted. This study examines dummy injury reduction effect of a side airbag system using full car side impact simulation according to FMVSS 214 test procedure. The simulation result without side airbag shows a good correlation with test data. The folded airbag simulation is carried out to check main design factors. Through the simulation with side airbag module integrated in the seat frame, it is found that the side airbag system provides a substantially enhanced protection for car occupants in side collisions.

  • PDF

Acoustic Metal Impact Signal Processing with Fuzzy Logic for the Monitoring of Loose Parts in Nuclear Power Plang

  • Oh, Yong-Gyun;Park, Su-Young;Rhee, Ill-Keun;Hong, Hyeong-Pyo;Han, Sang-Joon;Choi, Chan-Duk;Chun, Chong-Son
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권1E호
    • /
    • pp.5-19
    • /
    • 1996
  • This paper proposes a loose part monitoring system (LPMS) design with a signal processing method based on fuzzy logic. Considering fuzzy characteristics of metallic impact waveform due to not only interferences from various types of noises in an operating nuclear power plant but also complex wave propagation paths within a monitored mechanical structure, the proposed LPMS design incorporates the comprehensive relation among impact signal features in the fuzzy rule bases for the purposes of alarm discrimination and impact diagnosis improvement. The impact signal features for the fuzzy rule bases include the rising time, the falling time, and the peak voltage values of the impact signal envelopes. Fuzzy inference results based on the fuzzy membership values of these impact signal features determine the confidence level data for each signal feature. The total integrated confidence level data is used for alarm discrimination and impact diagnosis purposes. Through the perpormance test of the proposed LPMS with mock-up structures and instrumentation facility, test results show that the system is effective in diagnosis of the loose part impact event(i.e., the evaluation of possible impacted area and degree of impact magnitude) as well as in suppressing false alarm generation.

  • PDF

재료동특성에 기초한 방사성물질 운반용기 충격완충체의 치수최적설계 (Size Optimization of Impact Limiter in Radioactive Material Transportation Package Based on Material Dynamic Characteristics)

  • 최우석;남경오;서기석
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.20-28
    • /
    • 2008
  • According to IAEA regulations, a transportation package of radioactive material should perform its intended function of containing the radioactive contents after the drop test, which is one of hypothetical accident conditions. Impact limiters attached to a transport cask absorb the most of impact energy. So, it is appreciated to determine properly the shape, size and material of impact limiters. A material data needed in this determination is a dynamic one. In this study, several materials considered as those of impact limiters were tested by a drop weight facility to acquire dynamic material characteristics data. Impact absorbing volume of the impact limiter was derived mathematically for each drop condition. A size optimization of impact limiter was conducted. The derived impact absorbing volumes were applied as constraints. These volumes should be less than critical volumes generated based on the dynamic material characteristics. The derived procedure to decide the shape of impact limiter can be useful at the preliminary design stage when the transportation package's outline is roughly determined and applied as input value.

  • PDF

An Automatic Diagnosis Method for Impact Location Estimation

  • Kim, Jung-Soo;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.295-300
    • /
    • 1998
  • In this paper, a real time diagnostic algorithm fur estimating the impact location by loose parts is proposed. It is composed of two modules such as the alarm discrimination module (ADM) and the impact-location estimation module(IEM). ADM decides whether the detected signal that triggers the alarm is the impact signal by loose parts or the noise signal. When the decision from ADM is concluded as the impact signal, the beginning time of burst-type signal, which the impact signal has usually such a form in time domain, provides the necessary data fur IEM. IEM by use of the arrival time method estimates the impact location of loose parts. The overall results of the estimated impact location are displayed on a computer monitor by the graphical mode and numerical data composed of the impact point, and thereby a plant operator can recognize easily the status of the impact event. This algorithm can perform the diagnosis process automatically and hence the operator's burden and the possible operator's error due to lack of expert knowledge of impact signals can be reduced remarkably. In order to validate the application of this method, the test experiment with a mock-up (flat board and reactor) system is performed. The experimental results show the efficiency of this algorithm even under high level noise and potential application to Loose Part Monitoring System (LPMS) for improving diagnosis capability in nuclear power plants.

  • PDF

Rolling Test Simulation of Sea Transport of Spent Nuclear Fuel Under Normal Transport Conditions

  • JaeHoon Lim;Woo-seok Choi
    • 방사성폐기물학회지
    • /
    • 제21권4호
    • /
    • pp.439-450
    • /
    • 2023
  • In this study, the impact load resulting from collision with the fuel rods of surrogate spent nuclear fuel (SNF) assemblies was measured during a rolling test based on an analysis of the data from surrogate SNF-loaded sea transportation tests. Unfortunately, during the sea transportation tests, excessive rolling motion occurred on the ship during the test, causing the assemblies to slip and collide with the canister. Hence, we designed and conducted a separate test to simulate rolling in sea transportation to determine whether such impact loads can occur under normal conditions of SNF transport, with the test conditions for the fuel assembly to slide within the basket experimentally determined. Rolling tests were conducted while varying the rolling angle and frequency to determine the angles and frequencies at which the assemblies experienced slippage. The test results show that slippage of SNF assemblies can occur at angles of approximately 14° or greater because of rolling motion, which can generate impact loads. However, this result exceeds the conditions under which a vessel can depart for coastal navigation, thus deviating from the normal conditions required for SNF transport. Consequently, it is not necessary to consider such loads when evaluating the integrity of SNFs under normal transportation conditions.

The Impact of Housing Price on the Performance of Listed Steel Companies Evidence in China

  • Huang, Shuai;Shin, Seung-Woo;Wang, Run-Dong
    • 아태비즈니스연구
    • /
    • 제11권2호
    • /
    • pp.27-43
    • /
    • 2020
  • Purpose - This study explores the impact of the real estate industry on related industries for the perspective of Chinese steel companies. Design/methodology/approach - The impact of housing prices on the 41 listed steel companies' performance was analyzed by using the panel data model. We used two kinds of housing price indexes that are set in the panel data models to estimate the range of the real estate market, driving the performance growth of steel listed companies. Moreover, the net profit of steel companies is used as the dependent variable. To test the stability of the model, ROA used as a dependent variable for the robustness test. Also, to avoid the time trend of housing prices, this paper selects the growth rate of housing prices as the primary research variable. After Fisher-type testings, there is no unit root problem in both independent and dependent variables. Findings - The results indicated that the rise in the housing price has a positive influence on the steel company performance. When the housing price increases by 1%, the net profit of steel enterprises will increase by 5 to 20 million yuan. Research implications or Originality - In this paper, empirical data at the micro-level and panel model are used to quantify China's real estate industry's driving effect on the iron and steel industry, providing evidence from the microdata level. It helps us to understand further the status and role of China's real estate industry in the economic structure.

Delamination growth analysis in composite laminates subjected to low velocity impact

  • Kharazan, Masoud;Sadr, M.H.;Kiani, Morteza
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.387-403
    • /
    • 2014
  • This paper presents a high accuracy Finite Element approach for delamination modelling in laminated composite structures. This approach uses multi-layered shell element and cohesive zone modelling to handle the mechanical properties and damages characteristics of a laminated composite plate under low velocity impact. Both intralaminar and interlaminar failure modes, which are usually observed in laminated composite materials under impact loading, were addressed. The detail of modelling, energy absorption mechanisms, and comparison of simulation results with experimental test data were discussed in detail. The presented approach was applied for various models and simulation time was found remarkably inexpensive. In addition, the results were found to be in good agreement with the corresponding results of experimental data. Considering simulation time and results accuracy, this approach addresses an efficient technique for delamination modelling, and it could be followed by other researchers for damage analysis of laminated composite material structures subjected to dynamic impact loading.