DOI QR코드

DOI QR Code

Impact Localization Using Piezoelectric Paint Sensor with Mosaic Pattern Electrodes

모자이크 패턴 전극 압전 페인트 센서를 이용한 충격 위치 검출

  • Kang, Sang-Hyeon (Department of Mechatronics Engineering, Chonbuk National University) ;
  • Kang, Lae-Hyong (Department of Mechatronics Engineering, Chonbuk National University)
  • 강상현 (전북대학교 메카트로닉스공학과) ;
  • 강래형 (전북대학교 메카트로닉스공학과)
  • Received : 2018.10.09
  • Accepted : 2019.04.14
  • Published : 2019.04.30

Abstract

To detect the impact location of a structure, the authors' group conducted a study on piezoelectric paint sensor. The piezoelectric paint sensors are used for impact detection due to their inherent characteristics: sensitivity to high-frequency signal and impact. Additionally, the paint sensor can be applied on curved and complex structures where ceramic sensor would not be applicable. Moreover it is a self-powered sensor therefore no need for an external power source. For impact localization, mosaic pattern electrodes were coated on the specimen and the impact signal obtained from any part of the electrode where the impact occurred. If we more precise impact localization is required, the electrodes should be divided into more parts and impact data acquisition conducted in all the points of the electrode. In this paper, we developed a light, cheap and simple multi-channel data acquisition system to aid in data gathering. In total four channels data acquisition have been tested using the ARM Cortex-M3.

구조물의 충격 위치 검출을 위해 본 연구그룹에서는 압전 페인트 센서를 연구하고 있다. 압전 페인트는 고주파 신호 및 충격에 민감한 특성으로 인하여 충격 감지에 사용할 수 있다. 또한, 압전 페인트 센서는 세라믹 센서가 적용될 수 없는 곡선 또는 복잡한 구조에 코팅될 수 있으며 외부 전원을 필요로 하지 않는다. 충격을 검출하기 위해 모자이크 패턴 전극을 시험편 위에 코팅하였고, 충격 신호는 충격이 발생한 전극부에서 얻을 수 있었다. 보다 더 정확한 충격 위치 검출을 위해서는 전극을 더 많은 부분으로 나누어 해당 전극부로부터 충격 데이터 수집이 필요하다. 본 연구에서는, 데이터 수집을 위하여 가볍고 저렴한 간단한 멀티채널 데이터 수집 시스템을 개발하였다. ARM Cortex-M3의 UART 통신을 이용하여 총 4채널의 데이터를 수집하였다.

Keywords

OJSSBW_2019_v13n2_19_f0001.png 이미지

Fig. 1. AE method for impact localization: (a) in the case of aluminum plate; (b) in the case of composite plate[14]

OJSSBW_2019_v13n2_19_f0002.png 이미지

Fig. 2. Fabrication procedure for the piezoelectric paint sensor

OJSSBW_2019_v13n2_19_f0003.png 이미지

Fig. 3. Specification of the composite specimen

OJSSBW_2019_v13n2_19_f0004.png 이미지

Fig. 4. Test setup for sensitivity measurement

OJSSBW_2019_v13n2_19_f0005.png 이미지

Fig. 5. Graph of impact force and output voltage

OJSSBW_2019_v13n2_19_f0006.png 이미지

Fig. 6. Sensitivity measurement graphs of S1~S4

OJSSBW_2019_v13n2_19_f0007.png 이미지

Fig. 7. Sensitivity measurement graphs of S1~S4 when the impact occurs on the opposite side

OJSSBW_2019_v13n2_19_f0008.png 이미지

Fig. 8. Overall test setup for ADC data acquisition

OJSSBW_2019_v13n2_19_f0009.png 이미지

Fig. 9. Experimental setup for impact location detection

OJSSBW_2019_v13n2_19_f0010.png 이미지

Fig. 10. Flow diagram for programmable microcontroller

OJSSBW_2019_v13n2_19_f0011.png 이미지

Fig. 11. Impact localization results in the case of: (a) Impact on S1; (b) Impact on S2; (c) Impact on S3; (d) Impact on S4

Table 1 Measured sensitivity of the piezoelectric paint sensor S1~S4

OJSSBW_2019_v13n2_19_t0001.png 이미지

Table 2 Measured sensitivity of the piezoelectric paint sensor when impact is applied to the opposite side of the composite specimen

OJSSBW_2019_v13n2_19_t0002.png 이미지

References

  1. H. B. Park, "A Study on Manufacturing and Structural Test of Wind Turbine System Blade using Natural Composite," Journal of Aerospace System Engineering, Vol. 11, No. 4, pp. 30-35 (2017) https://doi.org/10.20910/JASE.2017.11.4.30
  2. S. Y. Park, S.-W. Kim, and S. Park, "Impact localization on a composite plate using multiplexed FBG sensors and error-outlier algorithm," Journal of Aerospace System Engineering, Vol. 12, No. 6, pp. 32-40 (2018) https://doi.org/10.20910/JASE.2018.12.6.32
  3. G. K. Ottman, H. F. Hofmann, A. C. Bhatt, and G. A. Lesieutre, "Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply," Power Electrinics, IEEE Transactions on, Vol. 17, No. 5, pp. 669-676 (2002) https://doi.org/10.1109/TPEL.2002.802194
  4. J. J. Dosch, D. J. Inman, and E Garcia. "A Self-Sensing Piezoelectric Actuator for Collocated Control," Journal of Intelligent Material Systems and Structures, Vol. 3, No. 1, pp. 166-185 (1992) https://doi.org/10.1177/1045389X9200300109
  5. D. H. Kim, "Recent Nondestructive Testing using Structural Health Monitoring Techniques," Journal of the Korean Society for Nondestructive Testing, Vol. 32, pp. 78-85 (2012) https://doi.org/10.7779/JKSNT.2012.32.1.078
  6. C. G. Kim, D. U. Sung, and H. J. Bang, "Health Monitoring in Composite Structure using Piezoceramic and Fiber Optic Sensors," Journal of the Korean Society for Nondestructive Testing, Vol. 23, No. 5, pp. 445-454 (2003)
  7. F. Levassort, P. Tran-Huu-Hue, E. Ringaard and M. Lethiecq, "High-Frequency and High-Temperature Electromechanical Performances of New PZT-PNN Piezoceramics," Journal of the European Ceramic Society, Vol. 21, No. 10, pp. 1361-1365 (2001) https://doi.org/10.1016/S0955-2219(01)00019-X
  8. X. Lin, and F. G. Yuan, "Experimental Study Applying a Migration Technique in Structural Health Monitoring," Structural Health Monitoring, Vol. 4, No. 4, pp. 341-353 (2005) https://doi.org/10.1177/1475921705057973
  9. P. Ueberschlag, "PVDF Piezoelectric Polymer," Sensor review, Vol. 21, No. 2, pp. 118-126 (2001) https://doi.org/10.1108/02602280110388315
  10. H. Luo, and S. Hanagud, "PVDF Film Sensor and its Applications in Damage Detection," Journal of aerospace Engineering, Vol. 12, No. 1, pp. 23-30 (1999) https://doi.org/10.1061/(ASCE)0893-1321(1999)12:1(23)
  11. K. Shiratsuyu, K. Hayashi, A. Ando, and Y. Sakabe, "Piezoelectric Characterization of Low-Temperature-Fired Pb(Zr, Ti)O3-Pb(Ni, Nb)O3 Ceramics," Japanese Journal of Applied Physics, Vol. 39, No. 9S, pp. 5609-5612 (2000) https://doi.org/10.1143/JJAP.39.5609
  12. Y. Zhang, "Piezoelectric Paint Sensor for Nondestructive Structural Condition Monitoring," Proc. SEM X International Congress and Exposition on Experimental and Applied Mechanics, pp. 7-10 (2004)
  13. Y. Zhang, "In Situ Fatigue Crack Detection using Piezoelectric Paint Sensor," Journal of Intelligent Material System and Structures, Vol. 17, No. 10, pp. 843-852 (2006) https://doi.org/10.1177/1045389X06059957
  14. J.-H. Oh, "Detection of Impact Location for Composite Plates Using Neural Networks," Master's Thesis, KAIST (1998)
  15. B.-H. Han, D.-J. Yoon, C.-S. Park, and Y.-S. Lee, "Impact Source Location on Composite CNG Storage Tank Using Acoustic Emission Energy Based Signal Mapping Method," Journal of the Korean Society for Nondestructive Testing, Vol. 36, No. 5, pp. 391-398 (2016) https://doi.org/10.7779/JKSNT.2016.36.5.391