• 제목/요약/키워드: Impact Prediction Methods

검색결과 186건 처리시간 0.024초

공공정보화사업 제안요청서 품질분석 : 시스템 운영 개념을 중심으로 (Quality Analysis of the Request for Proposals of Public Information Systems Project : System Operational Concept)

  • 박상휘;김병초
    • 한국IT서비스학회지
    • /
    • 제18권2호
    • /
    • pp.37-54
    • /
    • 2019
  • The purpose of this study is to present an evaluation model to measure the clarification level of stakeholder requirements of public sector software projects in the Republic of Korea. We tried to grasp the quality of proposal request through evaluation model. It also examines the impact of the level of stakeholder requirements on the level of system requirements. To do this, we analyzed existing research models and related standards related to business requirements and stakeholder requirements, and constructed evaluation models for the system operation concept documents in the ISO/IEC/IEEE 29148. The system operation concept document is a document prepared by organizing the requirements of stakeholders in the organization and sharing the intention of the organization. The evaluation model proposed in this study focuses on evaluating whether the contents related to the system operation concept are faithfully written in the request for proposal. The evaluation items consisted of three items: 'organization status', 'desired changes', and 'operational constraints'. The sample extracted 217 RFPs in the national procurement system. As a result of the analysis, the evaluation model proved to be valid and the internal consistency was maintained. The level of system operation concept was very low, and it was also found to affect the quality of system requirements. It is more important to clearly write stakeholders' requirements than the functional requirements. we propose a news classification methods for sentiment analysis that is effective for bankruptcy prediction model.

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.

낙동강 하구 지형변화 예측 및 외력조건에 따른 기여도 분석 (Prediction of Topographic Change in the Estuary of Nakdong River and Analysis of Its Contribution by External Force Condition)

  • 김강민;이중우
    • 한국항해항만학회지
    • /
    • 제43권1호
    • /
    • pp.64-71
    • /
    • 2019
  • 낙동강 하구의 지형변화 메커니즘을 파악하는 것은 하구의 관리방안과 처리방법 연구에 매우 중요하다. 본 연구에서는 낙동강 하구의 지형변화에 관여하는 강우, 하천유량, 유사량과 같은 육역으로부터 영향과 조석, 조류, 파랑, 표층퇴적물 등과 같은 해역으로부터의 영향을 조사 분석하였다. 분석된 자료에 근거하여 지형변화 실험을 수행하고, 지형변화와 외력조건별 기여도를 분석하였다. 수치실험 결과 지형변화는 하굿둑 방류 영향을 직접적으로 받는 수로부를 중심으로 침식이, 간접 영향권인 간석지를 중심으로 퇴적이 우세하게 나타났다. 수로부를 따라 이동되는 퇴적물이 파랑에 의해 분급, 배분되면서 울타리선 전면부에는 퇴적이 우세하였다. 지형변화 실험결과인 퇴적 우세현상과 비교하여, 외력조건별로 침식의 기여도가 크게 나타나고 있으나 각 외력조건의 복합적인 영향은 퇴적이 우세하게 나타나고 있다. 따라서, 낙동강 하구의 지형변화는 여러 복합적인 외력인자의 결과로 판단된다. 또한, 각 외력조건별 영향은 구역별로 상이한 기여도를 보이므로 하구관리방안 수립시 이러한 결과를 고려해야 하고, 반드시 복합적인 상호작용의 결과로 이해하고 있어야 할 것으로 사료된다.

하이브리드 인공신경망 모형을 이용한 부도 유형 예측 (Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model)

  • 조남옥;김현정;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.79-99
    • /
    • 2015
  • 부도 예측은 회계와 재무 분야에서 꾸준히 연구되고 있는 분야이다. 초기에는 주로 다중판별분석(multiple discriminant analysis)와 로짓 분석(logit analysis)과 같은 통계적 방법을 이용하였으나, 1990년대 이후에는 경영 분야의 분류 문제를 위해 많은 연구자들이 인공신경망(back-propagation neural network), 사계기반추론(case-based reasoning), 서포트 벡터 머신(support vector machine) 등과 같은 인공지능을 통한 접근법을 이용하여 통계적 방법보다 분류 성과 측면에서 우수함을 입증해왔다. 기존의 기업의 부도에 관한 연구에서 많은 연구자들이 재무비율을 이용하여 부도 예측 모형을 구축하는 것에 초점을 맞추어왔다. 부도예측에 관한 연구가 꾸준히 진행되고 있는 반면, 부도의 세부적인 유형을 예측하여 제시하는 것에 대한 연구는 미흡한 실정이었다. 따라서 본 연구에서는 수익성, 안정성, 활동성 지표를 중심으로 국내 비외감 건설업 기업들의 부도 여부뿐만 아니라 부도의 세부적인 유형까지 예측 가능한 모형을 개발하고자 한다. 본 연구에서는 부도 유형을 예측하기 위해 두 개의 인공신경망 모형을 결합한 하이브리드 접근법을 제안하였다. 첫 번째 인공신경망 모형은 부도예측을 위한 역전파 인공신경망을 이용한 모형이며, 두 번째 인공신경망 모형은 부도 데이터를 몇 개의 유형으로 분류하는 자기조직화지도(self-organizing map)을 이용한 모형이다. 실험 결과를 통해 정의된 5개의 부도 유형인 심각한 부도(severe bankruptcy), 안정성 부족(lack of stability), 활동성 부족(lack of activity), 수익성 부족(lack of profitability), 회생 가능한 부도(recoverable bankruptcy)는 재무 비율에 따라 유형별로 상이한 특성을 갖는 것을 확인할 수 있었다. 본 연구 결과를 통해 신용 평가 분야의 연구자와 실무자들이 기업의 부도의 유형에 대한 유용한 정보를 얻을 것으로 기대한다.

국지 앙상블자료와 홍수위험매트릭스를 이용한 홍수위험도 예측 방법 연구 (A study on prediction method for flood risk using LENS and flood risk matrix)

  • 최천규;김경탁;최윤석
    • 한국수자원학회논문집
    • /
    • 제55권9호
    • /
    • pp.657-668
    • /
    • 2022
  • 하천 유량이 증가된 상태에서 집중호우의 발생은 유량과 강우량 모두 하천변 홍수피해에 영향을 미치게 된다. 또한, 하천변 사회·경제적 영향 수준에 따라 피해정도에 차이를 보이게 되며, 특히, 인구 및 자산 밀집도가 높은 경우 홍수대응에 필요한 충분한 예보 선행시간의 확보가 요구된다. 본 연구에서는 홍수대응에 필요한 시간적 여유의 확보를 통한 피해저감 효과를 증대하기 위해 앙상블 강우유출모델링을 활용한 홍수위험매트릭스를 구축하고, 그 적용성을 판단하고자 한다. 홍수위험매트릭스는 홍수피해 자료를 활용한 홍수피해 영향수준(X축)을 구성하고, 기상청 LENS 강우자료를 이용한 앙상블 강우유출모델링의 결과로 위험 홍수량의 발생 가능성을 예측(Y축)하여 확률예보에 기반한 예측이 가능하다. 이를 위해 과거 홍수피해 자료 및 정량적 홍수피해 평가방법을 이용한 홍수피해 영향수준 결정 방법을 제시하였다. 낙동강권역의 태화강유역 및 형산강유역의 홍수특보지점에 대하여 기존 홍수특보 자료 그리고 피해 발생 상황과 비교하였다. 그 결과 최대 3일전부터 홍수위험 발생시간 및 정도에 대한 예측이 가능한 것으로 분석되었다. 따라서 홍수대응에 필요한 예보 선행시간 확보를 통한 피해저감 활동에 도움이 되리라 판단된다.

기업의 SNS 노출과 주식 수익률간의 관계 분석 (The Analysis on the Relationship between Firms' Exposures to SNS and Stock Prices in Korea)

  • 김태환;정우진;이상용
    • Asia pacific journal of information systems
    • /
    • 제24권2호
    • /
    • pp.233-253
    • /
    • 2014
  • Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.

해양소수력 건설에 따른 방류수로의 수위 변화 특성 분석 (Water Level Variation Analysis in the Cooling Water Discharge Channel of Power Plant due to Installation of Ocean Small Hydropower Plant)

  • 강금석;김지영;유무성
    • 한국해안·해양공학회논문집
    • /
    • 제21권5호
    • /
    • pp.391-404
    • /
    • 2009
  • 삼천포 화력발전소에서 냉각수로 이용되고 방류되는 해수를 이용한 소수력 발전소를 건설하였다. 본 연구에서는 해양소수력 발전소 건설시 가장 중요한 문제인 기존 화력발전소의 순환수 계통에 미치는 영향을 평가하기 위한 방안으로 배수로 수위의 해양소수력 건설 이전, 건설 중, 건설 이후 해양소수력 운전 상태에서의 변화를 예측한 값과 실제 계측값을 분석하였다. 설계시 일반적으로 이용되는 개수로 수리식에서부터 Flow 3D를 이용하여 3차원적인 수리해석 기법을 이용하는 것까지 다양한 예측을 시도하였고 관측을 통하여 검증하고자 하였다. 예측치와 실제 관측치의 비교 결과, 수위의 전체적인 평균값은 예측치와 관측치가 유사하였지만 수위의 변화 폭은 건설 중과 해양소수력 운전 상태에서 매우 크게 나타났다. 또한, 소수력 건설 이전에는 표준위어식과 Honma식의 예측값이 관측값과 가장 유사하였으나, 소수력 건설 이후에는 HEC-2, HEC-RAS, Flow-3D의 예측값이 실측값과 가까운 결과를 보였다.

Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework

  • Amini, Ali;Kia, Mehdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.351-368
    • /
    • 2021
  • This paper, by applying a reliability-based framework, develops seismic vulnerability macrozonation maps for Tehran, the capital and one of the most earthquake-vulnerable city of Iran. Seismic performance assessment of 3-, 4- and 5-story steel moment resisting frames (SMRFs), designed according to ASCE/SEI 41-17 and Iranian Code of Practice for Seismic Resistant Design of Buildings (2800 Standard), is investigated in terms of overall maximum inter-story drift ratio (MIDR) and unit repair cost ratio which is hereafter known as "damage ratio". To this end, Tehran city is first meshed into a network of 66 points to numerically locate low- to mid-rise SMRFs. Active faults around Tehran are next modeled explicitly. Two different combination of faults, based on available seismological data, are then developed to explore the impact of choosing a proper seismic scenario. In addition, soil effect is exclusively addressed. After building analytical models, reliability methods in combination with structure-specific probabilistic models are applied to predict demand and damage ratio of structures in a cost-effective paradigm. Due to capability of proposed methodology incorporating both aleatory and epistemic uncertainties explicitly, this framework which is centered on the regional demand and damage ratio estimation via structure-specific characteristics can efficiently pave the way for decision makers to find the most vulnerable area in a regional scale. This technical basis can also be adapted to any other structures which the demand and/or damage ratio prediction models are developed.

딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증 (Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM)

  • 차성재;강정석
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.1-32
    • /
    • 2018
  • 본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.

Near Infrared Spectroscopy for Measuring Purine Derivatives in Urine and Estimation of Microbial Protein Synthesis in the Rumen for Sheep

  • Atanassova, Stefka;Iancheva, Nana;Tsenkova, Roumiana
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1273-1273
    • /
    • 2001
  • The efficiency of the luminal fermentation process influences overall efficiency of luminal production, animal health and reproduction. Ruminant production systems have a significant impact on the global environment, as well. Animal wastes contribute to pollution of the environment as ammonia volatilized to the air and nitrate leached to ground water. Microbial protein synthesis in the rumen satisfies a large proportion of the protein requirements of animals. Quantifying the microbial synthesis is possible by using markers for lumen bacteria and protozoa such as nucleic acids, purine bases, some specific amino acids, or by isotopic $^{15}N,^{32}P,\;and\;^{35}S$ labelled feeds. All those methods require cannulated animals, they are time-consuming and some methods are very expensive as well. Many attempts have been made to find an alternative method for indirect measurement of microbial synthesis in intact animals. The present investigations aimed to assess possibilities of NIRS for prediction of purine nitrogen excretion and ruminal microbial nitrogen synthesis by NIR spectra of urine. Urine samples were collected from 12 growing sheep,6 of them male, and 6- female. The sheep were included in feeding experiment. The ration consisted of sorghum silage and protein supplements -70:30 on dry matter basis. The protein supplements were chosen to differ in protein degradability. The urine samples were collected daily in a vessel containing $60m{\ell}$ 10% sulphuric acid to reduce pH below 3 and diluted with tap water to 4 liters. Samples were stored in plastic bottles and frozen at $-20^{\circ}C$ until chemical and NIRS analysis. The urine samples were analyzed for purine derivates - allantoin, uric acid, xantine and hypoxantine content. Microbial nitrogen synthesis in the lumen was calculated according to Chen and Gomes, 1995. Transmittance urine spectra with sample thickness 1mm were obtained by NIR System 6500 spectrophotometer in the spectral range 1100-2500nm. The calibration was performed using ISI software and PLS regression, respectively. The following statistical results of NIRS calibration for prediction of purine derivatives and microbial protein synthesis were obtained.(Table Omitted). The result of estimation of purine nitrogen excretion and microbial protein synthesis by NIR spectra of urine showed accuracy, adequate for rapid evaluation of microbial protein synthesis for a large number of animals and different diets. The results indicate that the advantages of the NIRS technology can be extended into animal physiological studies. The fast and low cost NIRS analyses could be used with no significant loss of accuracy when microbial protein synthesis in the lumen and the microbial protein flow in the duodenum are to be assessed by NIRS.

  • PDF