• Title/Summary/Keyword: Impact Angle

Search Result 772, Processing Time 0.031 seconds

Hypervelocity Impact Analyses Considering Various Impact Conditions for Space Structures with Different Thicknesses (다양한 두께의 우주 구조물에 대한 다양한 충돌 조건의 초고속 충돌 해석 연구)

  • Won-Hee Ryu;Ji-Woo Choi;Hyo-Seok Yang;Hyun-Cheol Shin;Chang-Hoon Sim;Jae-Sang Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.43-57
    • /
    • 2023
  • The hypervelocity impact simulations of space objects and structures are performed using LS-DYNA. Space objects with spherical, conical, and hollow cylindrical shapes are modeled using the Smoothed Particle Hydrodynamics (SPH). The direct and indirect impact zones of a space structure are modeled using the SPH and finite element methods, respectively. The Johnson-Cook material model and Mie-Grüneisen Equation of State are used to represent the nonlinear behavior of metallic materials in hypervelocity impact. In the hypervelocity impact simulations, various impact conditions are considered, such as the shape of the space object, the thickness of the space structure, the impact angle, and the impact velocity. The shapes of debris clouds are quantitatively classified based on the geometric parameters. Conical space objects provide the worst debris clouds for all impact conditions.

Numerical Study of Impact of Microdroplet Containing Nanoparticles (나노입자를 포함한 미세액적의 충돌에 대한 수치적 연구)

  • Roh, Sang-Eun;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.609-617
    • /
    • 2012
  • The impact, spreading and recoil processes of a nanoparticle-laden droplet impacting on a horizontal solid surface are numerically investigated by solving the conservation equations for mass, momentum, energy and mass fraction. The liquid-air interface is tracked using a level-set method that is modified to include the effect of contact angle hysteresis at the wall. The species transport equation including a thermal diffusion term is additionaly solved to determine the nanoparticle distribution in the droplet. The effect of nanoparticle concentration and contact angle are also studied.

Time-to-go Polynomial Guidance Law for Target Observability Enhancement (표적 가관측성 향상을 위한 Time-to-go 다항식 유도법칙)

  • Kim, Tae-Hun;Lee, Chang-Hun;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • In this paper, we propose a new guidance law for target observability enhancement, which can control both terminal impact angle and acceleration. The proposed guidance law is simple form, combined conventional time-to-go polynomial guidance and a additional bias term which consists of relative position and proportional gain. The guidance law provides oscillatory flight trajectory and it maintains the conventional time-to-go polynomial guidance performance. To investigate the characteristics of the guidance law, we derive the closed-form solution, and various simulations are performed for proving the validity of the proposed guidance.

The Analysis of Hydrological Property with Curved-channel Type (하도만곡형상에 따른 수리특성분석)

  • Ahn, Seung-Seop;Lee, Sang-Il;Park, Dong-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1309-1317
    • /
    • 2011
  • This study selected 6 river reach, which have various curved-channel, included in an object of study as making the Nakdong River, which is a real nature river, as a point of an object of study by using SMS RMA-2 model, a 2D numerical analysis model, and applied project flood and analyzed and examined characteristic of hydrological property and super-elevation, which includes characteristic of the velocity of a moving fluid. As a result, in a river reach, whose width is wide, angle of curved-channel has impact on the velocity of a moving fluid of inside of curved-channel and in a river reach, whose width is narrow, the radius of curvature and width of the river have impact on the velocity of a moving fluid of inside of curved-channel. Also it found out that the ratio of reduction in water-level of inside of curved-channel is more bigger than ratio of increasing in water-level of outside of curved-channel when project flood is increasing and angle of curve is increasing. Based on this, this study would be used as a expectation of danger and preliminary data in planning real river or a business, that creates an environment.

Optimal Terminal Guidance Law for BTT Missiles Considering Impact-Angle Constraint of Stationary Target (정지 표적의 표적 충돌각을 고려한 BTT 미사일의 최적 종말 유도 법칙 설계)

  • Yeom, Joon-Hyung;Park, Sung-Min;Ha, In-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1737_1738
    • /
    • 2009
  • 미사일의 표적 충돌각을 원하는 각도로 제어하는 것은 표적의 취약점을 공략하기 위해 필수적인 기술이다. 표적 타격 지점 및 충돌각을 고려하지 않으면 타격에 성공하였다고 하더라도 표적의 방어 능력이 좋거나 신관이 충돌각에 민감하면 표적의 효과적인 파괴에 실패할 수도 있다. 이런 경우 유도 미사일의 종말 유도 효율을 증가시키기 위해 미사일이 표적을 타격하는 각도인 표적 충돌각(Impact Angle)을 제어할 수 있으면 적정 비행경로의 설정에 유리하고 우회공격 등이 가능할 뿐 아니라 미사일 탄두의 효과를 극대화할 수 있다. 하지만 이러한 장점을 갖는 표적 충돌각 유도 기법에 대한 연구는 아직 활발하게 행해지고 있지는 못하다. 기존 연구 결과들은 2차원 평면상에서의 충돌각 제어만을 다루고 있어, 요와 피치 채널의 커플링 문제가 있는 BTT 미사일에 적용하기가 어렵다는 문제점을 갖고 있다. 또한 미사일 동역학을 무시하거나 단순화하여 문제를 풀고 있기 때문에 실제 상황에 적용이 어렵다는 단점이 있다. 본 논문에서는 3차원 공간상에서의 롤 명령을 모두 포함하면서 동시에 미사일 자동조종제어기, 핀 구동기 동역학을 모두 고려한 새로운 BTT 미사일의 표적 충돌각 유도 기법을 제안한다.

  • PDF

An Experimental Study on the Liquefaction Behavior under Various Loading Conditions (다양한 입력하중에서의 액상화 발생 특성 비교 연구)

  • Kim, Soo-Il;Hwang, Seon-Ju;Park, Keun-Bo;Choi, Jae-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.320-327
    • /
    • 2005
  • Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal, wedge, increasing wedge and real earthquake loading are investigated focusing on the excess pore water pressure build up instead of liquefaction resistance strength in this paper. There are large differences between two types of earthquake loading - impact and vibration in liquefaction characteristics. The angle of phase change line of sinusoidal loading is very close to the vibration type, whereas the cumulative deviator stress and cumulative plastic strain are larger than two types of real earthquake loadings. On the other hand, the liquefaction characteristics of increasing wedge loadings are located in the range between vibration and impact earthquake loadings. It is concluded that the sinusoidal loading overestimates the resistance of soil under real earthquake loading. Based on results obtained, the increasing wedge loading can reflect the liquefaction behavior under real earthquake loadings more efficiently than sinusoidal loading based on equivalent uniform stress concept.

  • PDF

A Study on Solid Particle Erosion Characteristics of Surface Treated 12wt%Cr Steel for USC Power Plant (USC 화력발전소용 12wt%Cr강의 표면처리에 따른 고체입자침식특성에 관한 연구)

  • 엄기원;이선호;이의열
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.324-326
    • /
    • 2004
  • l2wt%Cr Steel has been applied on turbine bucket and nozzle partition material of power plant. Turbine bucket and nozzle get damaged by solid particle within steam, therefore they are protected by surface treatments such as ion nitriding, boriding and chrome carbide HVOF spray coating. In this study, solid particle erosion(SPE) characteristics after these surface treatments are examined at operating temperature 540$^{\circ}C$ and 590$^{\circ}C$ of fossil power plant and the mechanism of damage was studied. Erosion of 12wt%Cr steel is originated by micro cutting and that of boriding and chrome carbide HVOF spray is originated by these mechanism - repeating collision, crack initiation and propagation. As the results of SPE test at 540$^{\circ}C$ and 30$^{\circ}$ impact angle that is the most commonly occurred in power plant, Boriding had the best SPE -resistance property, Cr$_2$C$_3$-25(Ni20Cr) HVOF spayed and ion nitrided samples were also better than bare metals(l2wt%Cr Steels). At 590$^{\circ}C$ and 30$^{\circ}$ impact angle, Boriding had also the most superior characteristic and HVOF spay sample was better than bare metal.

  • PDF

Impact Collapse Behavior of Hybrid Circular Thin-walled Member by Stacking Condition (적층조건에 따른 혼성 원형 박육부재의 충격압궤거동)

  • Lee, Kil-Sung;Park, Eu-Ddeum;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.235-240
    • /
    • 2010
  • The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, energy absorbing members should be absorbed with collision energy sufficiently. But vehicle structure must be light weight for the environmentally-friendly aspect, in order to improve fuel efficiency and to reduce tail gas emission. Therefore, the light weight of vehicle must be achieved in a status of securing safety of crash. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) is representative one among the light-weight materials. In this study, impact collapse behavior of circular hybrid thin-walled member is evaluated. The hybrid members are manufactured by wrapping CFRP prepreg sheets outside the aluminum circular members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties change with its stacking condition, special attention is given to the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member. Collapse mode and energy absorption capability of the hybrid thin-walled member are analyzed with change of the fiber orientation angle and interface number.

Suboptimal Homing Guidance Law by Synthesis of the Aided Loop for Impact Angle Constraint (충돌각 구속조건을 위한 보조루프 합성을 통한 준최적 호밍 유도법칙)

  • Lee, Jin-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1006-1012
    • /
    • 2007
  • In this paper, a suboptimal homing guidance law for the homing missiles with an impact angle constraint is presented. Unlike general LQ optimal control, the aided loop ensuring some degrees of freedom for the constraint is introduced. Then an optimal feedback loop in consideration of the aided loop is designed by using Schwartz inequality. The aided loop is synthesized with the optimal control to produce the guidance command. Furthermore, to investigate the characteristics of the guidance law we carry out the comparative studies with other guidance laws. The results of the various computer simulations show the good performance of the proposed law.

Assessment on Mechanical Performance of Porcelain and Glass Insulators by Pendulum Weight (진자 추에 의한 자기 및 유리애자의 기계적 성능 평가)

  • Shong, Kil-Mok;Kim, Jong-Min;Kim, Young-Seok;Bang, Sun-Bae;Kim, Sun-Gu;Jeon, Yong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.475-476
    • /
    • 2008
  • This paper is an experimental test for the close examination of breakdown causes of glass insulators using at the electric rail-road. The glass insulator is estimated the mechanical performance according to hitting test(ST-100, Sharp-Eng, KOR) that is based on KSC 3810. Insulators is damaged by pendulum weight at the steps of hitting angles. Glass and porcelain insulators are broken at the hitting angle of $72^{\circ}$. From the these results, glass insulator absorbed the impact from the pendulum weight but on the porcelain insulator, it is not transmitted vibration by impact. Hereafter, these results are expected that is used the data for the assessment on breakdown cause of a glass insulator.

  • PDF