DOI QR코드

DOI QR Code

Hypervelocity Impact Analyses Considering Various Impact Conditions for Space Structures with Different Thicknesses

다양한 두께의 우주 구조물에 대한 다양한 충돌 조건의 초고속 충돌 해석 연구

  • Won-Hee Ryu (Department of Aerospace Engineering, Chungnam National University) ;
  • Ji-Woo Choi (Department of Aerospace Engineering, Chungnam National University) ;
  • Hyo-Seok Yang (Department of Aerospace Engineering, Chungnam National University) ;
  • Hyun-Cheol Shin (Satellite System 5 Team, Hanwha System) ;
  • Chang-Hoon Sim (Department of Aerospace Engineering, Chungnam National University) ;
  • Jae-Sang Park (Department of Aerospace Engineering, Chungnam National University)
  • 류원희 (충남대학교 항공우주공학과) ;
  • 최지우 (충남대학교 항공우주공학과) ;
  • 양효석 (충남대학교 항공우주공학과) ;
  • 신현철 (한화시스템 위성시스템 5팀) ;
  • 심창훈 (충남대학교 항공우주공학과) ;
  • 박재상 (충남대학교 항공우주공학과)
  • Received : 2023.04.29
  • Accepted : 2023.07.25
  • Published : 2023.08.31

Abstract

The hypervelocity impact simulations of space objects and structures are performed using LS-DYNA. Space objects with spherical, conical, and hollow cylindrical shapes are modeled using the Smoothed Particle Hydrodynamics (SPH). The direct and indirect impact zones of a space structure are modeled using the SPH and finite element methods, respectively. The Johnson-Cook material model and Mie-Grüneisen Equation of State are used to represent the nonlinear behavior of metallic materials in hypervelocity impact. In the hypervelocity impact simulations, various impact conditions are considered, such as the shape of the space object, the thickness of the space structure, the impact angle, and the impact velocity. The shapes of debris clouds are quantitatively classified based on the geometric parameters. Conical space objects provide the worst debris clouds for all impact conditions.

우주 물체 및 우주 구조물의 초고속 충돌 시뮬레이션을 LS-DYNA를 사용하여 수행하였다. 구형, 원뿔형, 및 속이 빈 원통형의 다양한 형상의 우주 물체는 SPH(Smoothed Particle Hydrodynamics)를 사용하여 모델링하였다. 다양한 두께의 우주 구조물은 직접 충돌 영역과 간접 충돌 영역으로 나누어, 각각 SPH 및 유한 요소를 사용하여 나타내었다. 초고속 충돌에서 금속 재료의 비선형 거동을 나타내기 위하여 Johnson-cook 재료 모델과 Mie-Grüneisen 상태 방정식을 사용하였다. 우주 물체의 형상, 우주 구조물의 두께, 충돌 각도, 및 충돌 속도의 다양한 충돌 조건을 고려하였다. 파편운은 우주 물체와 우주 구조의 초고속 충돌로 인해 발생되며, 발생된 파편운의 형상을 정량적으로 분석하였다. 본 연구의 모든 충돌 조건에서, 원뿔 형상의 우주 물체로 인한 파편운이 가장 위험한 형상임을 확인하였다.

Keywords

Acknowledgement

본 논문은 2022년 정부(과학기술정보통신부)의 재원으로 한국연구재단 스페이스챌린지사업(NRF-2022M1A3B8076744)의 지원을 받아 수행된 연구입니다.

References

  1. Our World in Data, "https://ourworldindata.org/grapher/yearly-number-of-objects-launched-into-outer-space" 
  2. ESA Space Debris Office, "ESA's annual space environment report 2022," no.6, Apr. 2022 
  3. ESA's Space Debris Office, http://www.esa.int/Our_Activities/Operations/Space_Debris/FAQ_Frequently_asked_questions 
  4. X. Huang, C. Yin, H. Ru, S. Zhao, Y. Deng, Y. Guo, and S. Liu, "Hypervelocity impact damage behavior of B4C/Al composite for MMOD shielding application," Materials & Design, vol. 186, no.15, 2020. 
  5. P. S. Kang, C. K. Im, S. K. Youn, J. H. Lim, and D. S. Hwang, "A study on the damage of satellite caused by hypervelocity impact with orbital debris," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 40, no. 7, pp. 555-563, Jul. 2012.  https://doi.org/10.5139/JKSAS.2012.40.7.555
  6. A. J. Piekutowski, "Debris clouds generated by hypervelocity impact of cylindrical projectiles with thin aluminum plates," International Journal of Impact Engineering, vol. 5, no. 1-4, pp. 509-518, 1987.  https://doi.org/10.1016/0734-743X(87)90066-2
  7. J. L. Hyde, E. L. Christiansen, and D. M. Lear, "Observations of MMOD impact damage to the ISS," International Orbital Debris Conference, pp. 6001, 2019. 
  8. T. H. Yang, and Y. S. Lee, "A study of impact reduction characteristics of hat-shaped stiffened panel under hypervelocity impact," Transactions of the Korean Society of Mechanical Engineers A, vol. 37, no. 7, pp. 929-935, 2013.  https://doi.org/10.3795/KSME-A.2013.37.7.929
  9. P. L. Zhang, K. B. Xu, M. Li, Z. Z. Gong, G. M. Song, Q. Wu, and Z. J. Yu, "Study of the shielding performance of a whipple shield enhanced by Ti-Al-nylon impedance-graded materials," International Journal of Impact Engineering, vol. 124, pp. 23-30, Feb. 2019.  https://doi.org/10.1016/j.ijimpeng.2018.08.005
  10. H. C. Shin, and J. S. Park, "Hypervelocity impact simulations between space debris and space shielding system," The Korean Society for Aeronautical and Space Sciences 2022 Fall Conference Abstracts, pp. 861-862, 2022. 
  11. R. Q. Chi, B. J. Pang, G. S. Guan, Z. Q. Yang, Y. Zhu, and M. J. He, "Analysis of debris clouds produced by impact of aluminum spheres with aluminum sheets," International Journal of Impact Engineering, vol. 35, no. 12, pp. 1465- 1472, Dec. 2008.  https://doi.org/10.1016/j.ijimpeng.2008.07.009
  12. J. H. Jo, and Y. S. Lee, "A quantitative analysis of hypervelocity debris clouds using SPH", Korean Society of Mechanical Engineers Spring and Autumn Conference, pp. 739-744, Nov. 2011. 
  13. J. Huang, Z. X. Ma, L. S. Ren, Y. Li, Z. X. Zhou, and S. Liu, "A new engineering model of debris cloud produced by hypervelocity impact," International Journal of Impact Engineering, vol. 56, pp. 32-39, Jun. 2013.  https://doi.org/10.1016/j.ijimpeng.2012.07.003
  14. M. V. Silnikov, I. V. Guk, A. I. Mikhaylin, A. F. Nechunaev, and B. V. Rumyantsev, "Numerical simulation of hypervelocity impacts of variously shaped projectiles with thin bumpers," Materials Physics & Mechanics, vol. 42, no. 1, pp. 20-29, 2019. 
  15. H. C. Shin, and J. S. Park, "Hypervelocity impact simulations considering space objects with various shapes and impact angles," Journal of the Korean Society for Aeronautical & Space Sciences, vol. 50, no. 12, pp. 829- 838, Dec. 2022.  https://doi.org/10.5139/JKSAS.2022.50.12.829
  16. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, "Meshless methods: An overview and recent developments," Computer Methods in Applied Mechanics and Engineering, vol. 139, no. 1-4, pp. 3-47, Dec. 1996.  https://doi.org/10.1016/S0045-7825(96)01078-X
  17. C. J. Hayhurst, and R. A. Clegg, "Cylindrically symmetric SPH simulations of hypervelocity impacts on thin plates," International Journal of Impact Engineering, vol. 20, no. 1-5, pp. 337-348, 1997.  https://doi.org/10.1016/S0734-743X(97)87505-7
  18. G. R. Liu, "Meshfree methods: moving beyond the finite element method," CRC press, 2009. 
  19. K. Wen, and X. W. Chen, "Failure evolution in hypervelocity impact of Al spheres onto thin Al plates," International Journal of Impact Engineering, vol. 147, no. 103727, Jan. 2021. 
  20. A. I. Burshtein, "Introduction to thermodynamics and kinetic theory of matter," Wiley-VCH, 2008. 
  21. R. Aslebagh, "Hypervelocity impact on satellite sandwich structures: Development of a simulation model and investigation of projectile shape and honeycomb core effects," Doctoral dissertation, University of Windsor, 2021. 
  22. Z. S. Liu, S. Swaddiwudhipong, and M. J. Islam, "Perforation of steel and aluminum targets using a modified Johnson-Cook material model," Nuclear Engineering and Design, vol. 250, pp. 108-115, Sep. 2012.  https://doi.org/10.1016/j.nucengdes.2012.06.026
  23. F. Plassard, J. Mespoulet, and P. Hereil, "Hypervelocity impact of aluminium sphere against aluminium plate: experiment and LS-DYNA correlation," In Proceedings of the 8th European LS-DYNA users conference, pp. 1-11, May. 2011 
  24. J. O. Hallquist, "LS-DYNA keyword user's manualvolume I," Livermore Software Technology Corporation, 2009. 
  25. P. S. Chandel, D. Sood, R. Kumar, P. Sharma, B. Sewak, V. Bhardwaj, and M. Singh, "Hypervelocity impact of tungsten cubes on spaced armour," In Journal of Physics: Conference Series, IOP Publishing, vol. 377, no. 1, Jul. 2012