• Title/Summary/Keyword: Immune System

Search Result 1,921, Processing Time 0.031 seconds

Immune-Enhancing Effect of Nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a Mouse Model of Cyclophosphamide-Induced Immunosuppression

  • Choi, Dae-Woon;Jung, Sun Young;Kang, Jisu;Nam, Young-Do;Lim, Seong-Il;Kim, Ki Tae;Shin, Hee Soon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.218-226
    • /
    • 2018
  • Nanometric Lactobacillus plantarum nF1 (nLp-nF1) is a biogenics consisting of dead L. plantarum cells pretreated with heat and a nanodispersion process. In this study, we investigated the immune-enhancing effects of nLp-nF1 in vivo and in vitro. To evaluate the immunostimulatory effects of nLp-nF1, mice immunosuppressed by cyclophosphamide (CPP) treatment were administered with nLp-nF1. As expected, CPP restricted the immune response of mice, whereas oral administration of nLp-nF1 significantly increased the total IgG in the serum, and cytokine production (interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-${\alpha}$)) in bone marrow cells. Furthermore, nLp-nF1 enhanced the production of splenic cytokines such as IL-12, TNF-${\alpha}$, and interferon gamma (IFN-${\gamma}$). In vitro, nLp-nF1 stimulated the immune response by enhancing the production of cytokines such as IL-12, TNF-${\alpha}$, and IFN-${\gamma}$. Moreover, nLp-nF1 given a food additive enhanced the immune responses when combined with various food materials in vitro. These results suggest that nLp-nF1 could be used to strengthen the immune system and recover normal immunity in people with a weak immune system, such as children, the elderly, and patients.

Innate Immune Response of NNV Infection in Fish and Its Disease Prevention

  • Lu, Ming-Wei;Wu, Jen-Leih
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.127-132
    • /
    • 2007
  • The innate immune response which is seen as the initial defense mechanism induced upon foreign invasion has been well documented in higher vertebrates. This has also been observed in fish infected with NNV. However, the fish immune system based on fully established genome project has not been fully elucidated. Therefore, in this review, we hope to correlate NNV infection in fish that has devastated the aquaculture industry, to its host immune system. Further, we discuss the potential preventive measures in overcoming the widespread of this neurodisease.

  • PDF

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

Negative Selection Algorithm for DNA Pattern Classification

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.190-195
    • /
    • 2004
  • We propose a pattern classification algorithm using self-nonself discrimination principle of immune cells and apply it to DNA pattern classification problem. Pattern classification problem in bioinformatics is very important and frequent one. In this paper, we propose a classification algorithm based on the negative selection of the immune system to classify DNA patterns. The negative selection is the process to determine an antigenic receptor that recognize antigens, nonself cells. The immune cells use this antigen receptor to judge whether a self or not. If one composes ${\eta}$ groups of antigenic receptor for ${\eta}$ different patterns, these receptor groups can classify into ${\eta}$ patterns. We propose a pattern classification algorithm based on the negative selection in nucleotide base level and amino acid level. Also to show the validity of our algorithm, experimental results of RNA group classification are presented.

  • PDF

A Development of Artificial Immune Model for Network Intrusion Detection (네트워크 침입 탐지를 위한 인공 면역 모델의 개발)

  • ;Peter Brently
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.373-379
    • /
    • 1999
  • This paper investigates the subject of intrusion detection over networks. Existing network-based IDS's are categorised into three groups and the overall architecture of each group is summarised and assessed. A new methodology to this problem is then presented, which is inspired by the human immune system and based on a novel artificial immune model. The architecture of the model is presented and its characteristics are compared with the requirements of network-based IDS's. The paper concludes that this new approach shows considerable promise for future network-based IDS's

  • PDF

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

Reproduction of Epstein-Barr Virus Infection and Pathogenesis in Humanized Mice

  • Fujiwara, Shigeyoshi
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Epstein-Barr virus (EBV) is etiologically associated with a variety of diseases including lymphoproliferative diseases, lymphomas, carcinomas, and autoimmune diseases. Humans are the only natural host of EBV and limited species of new-world monkeys can be infected with the virus in experimental conditions. Small animal models of EBV infection, required for evaluation of novel therapies and vaccines for EBV-associated diseases, have not been available. Recently the development of severely immunodeficient mouse strains enabled production of humanized mice in which human immune system components are reconstituted and express their normal functions. Humanized mice can serve as infection models for human-specific viruses such as EBV that target cells of the immune system. This review summarizes recent studies by the author's group addressing reproduction of EBV infection and pathogenesis in humanized mice.

Plant Exocytic Secretion of Toxic Compounds for Defense

  • Kwon, Chian;Yun, Hye Sup
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.77-81
    • /
    • 2014
  • In contrast to animals, plants do not have a circulatory system as well as mobile immune cells that allow them to protect themselves against pathogens. Instead, plants exclusively depend on the innate immune system to defend against pathogens. As typically observed in the animal innate immunity, plant immune responses are composed of pathogen detection, defense signaling which includes transcriptional reprogramming, and secretion of antimicrobial compounds. Although knowledge on recognition and subsequent signaling of pathogen-derived molecules called elicitors is now expanding, the mechanisms of how these immune molecules are excreted are yet poorly understood. Therefore, current understandings of how plants secrete defense products especially via exocytosis will be discussed in this review.

Modeling of Positive Selection for the Development of a Computer Immune System and a Self-Recognition Algorithm

  • Sim, Kwee-Bo;Lee, Dong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.453-458
    • /
    • 2003
  • The anomaly-detection algorithm based on negative selection of T cells is representative model among self-recognition methods and it has been applied to computer immune systems in recent years. In immune systems, T cells are produced through both positive and negative selection. Positive selection is the process used to determine a MHC receptor that recognizes self-molecules. Negative selection is the process used to determine an antigen receptor that recognizes antigen, or the nonself cell. In this paper, we propose a novel self-recognition algorithm based on the positive selection of T cells. We indicate the effectiveness of the proposed algorithm by change-detection simulation of some infected data obtained from cell changes and string changes in the self-file. We also compare the self-recognition algorithm based on positive selection with the anomaly-detection algorithm.

Application of Immune Algorithm for Harmonic State Estimation (전력시스템 고조파 상태 추정에서 면역 알고리즘 적용)

  • Wang Yong-Peel;Park In-Pyo;Chung Hyeng-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.12
    • /
    • pp.645-654
    • /
    • 2004
  • The design of a measurement system to perform Harmonic State Estimation(HSE) is a very complex problem. In particular, the number of available harmonic analysis measurement instruments is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents an optimal algorithm of HSE which is based on an optimal placement of measurement points using Immune Algorithm (IAs). This IA-HSE has been applied to power system for the validation of an optimal algorithm of HSE. The study results have indicated an economical and effective method for optimal placement of measurement points using Immune Algorithm (IAs) in the HSE.