DOI QR코드

DOI QR Code

Plant Exocytic Secretion of Toxic Compounds for Defense

  • Kwon, Chian (Department of Molecular Biology, Dankook University) ;
  • Yun, Hye Sup (Department of Biological Sciences, Konkuk University)
  • Received : 2014.05.11
  • Accepted : 2014.05.16
  • Published : 2014.06.30

Abstract

In contrast to animals, plants do not have a circulatory system as well as mobile immune cells that allow them to protect themselves against pathogens. Instead, plants exclusively depend on the innate immune system to defend against pathogens. As typically observed in the animal innate immunity, plant immune responses are composed of pathogen detection, defense signaling which includes transcriptional reprogramming, and secretion of antimicrobial compounds. Although knowledge on recognition and subsequent signaling of pathogen-derived molecules called elicitors is now expanding, the mechanisms of how these immune molecules are excreted are yet poorly understood. Therefore, current understandings of how plants secrete defense products especially via exocytosis will be discussed in this review.

Keywords

References

  1. Jones, J.D. and Dangl, J.L. (2006) The plant immune system. Nature, 444, 323-329. https://doi.org/10.1038/nature05286
  2. Dodds, P.N. and Rathjen, J.P. (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet., 11, 539-548.
  3. Macho, A.P. and Zipfel, C. (2014) Plant PRRs and the activation of innate immune signaling. Mol. Cell, 54, 263-272. https://doi.org/10.1016/j.molcel.2014.03.028
  4. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G. and Boller, T. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428, 764-767. https://doi.org/10.1038/nature02485
  5. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T. and Felix, G. (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacteriummediated transformation. Cell, 125, 749-760. https://doi.org/10.1016/j.cell.2006.03.037
  6. Willmann, R., Lajunen, H.M., Erbs, G., Newman, M.A., Kolb, D., Tsuda, K., Katagiri, F., Fliegmann, J., Bono, J.J., Cullimore, J.V., Jehle, A.K., Gotz, F., Kulik, A., Molinaro, A., Lipka, V., Gust, A.A. and Nurnberger, T. (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. U.S.A., 108, 19824-19829. https://doi.org/10.1073/pnas.1112862108
  7. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 104, 19613-19618. https://doi.org/10.1073/pnas.0705147104
  8. Ron, M. and Avni, A. (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistancelike gene family in tomato. Plant Cell, 16, 1604-1615. https://doi.org/10.1105/tpc.022475
  9. de Jonge, R., van Esse, H.P., Maruthachalam, K., Bolton, M.D., Santhanam, P., Saber, M.K., Zhang, Z., Usami, T., Lievens, B., Subbarao, K.V. and Thomma, B.P. (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc. Natl. Acad. Sci. U.S.A., 109, 5110-5115. https://doi.org/10.1073/pnas.1119623109
  10. Kwon, C. (2010) Plant defense responses coming to shape. Plant Pathol. J., 26, 115-120. https://doi.org/10.5423/PPJ.2010.26.2.115
  11. Shen, Q.H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., Keller, B., Seki, H., Ulker, B., Somssich, I.E. and Schulze-Lefert, P. (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 315, 1098-1103. https://doi.org/10.1126/science.1136372
  12. Burch-Smith, T.M., Schiff, M., Caplan, J.L., Tsao, J., Czymmek, K. and Dinesh-Kumar, S.P. (2007) A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol., 5, e68. https://doi.org/10.1371/journal.pbio.0050068
  13. Wirthmueller, L., Zhang, Y., Jones, J.D. and Parker, J.E. (2007) Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. Curr. Biol., 17, 2023-2029. https://doi.org/10.1016/j.cub.2007.10.042
  14. Dixon, R.A. (2001) Natural products and plant disease resistance. Nature, 411, 843-847. https://doi.org/10.1038/35081178
  15. van Loon, L.C., Rep, M. and Pieterse, C.M. (2006) Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol., 44, 135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  16. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., Llorente, F., Molina, A., Parker, J., Somerville, S. and Schulze-Lefert, P. (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 310, 1180-1183. https://doi.org/10.1126/science.1119409
  17. Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B.H., Molina, A., Schulze-Lefert, P., Lipka, V. and Somerville, S. (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell, 18, 731-746. https://doi.org/10.1105/tpc.105.038372
  18. Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., Humphry, M., Consonni, C., Panstruga, R., Sanchez-Vallet, A., Molina, A. and Schulze-Lefert, P. (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323, 101-106. https://doi.org/10.1126/science.1163732
  19. Collins, N.C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S.C. and Schulze-Lefert, P. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425, 973-977. https://doi.org/10.1038/nature02076
  20. Kwon, C., Neu, C., Pajonk, S., Yun, H.S., Lipka, U., Humphry, M., Bau, S., Straus, M., Kwaaitaal, M., Rampelt, H., El Kasmi, F., Jurgens, G., Parker, J., Panstruga, R., Lipka, V. and Schulze-Lefert, P. (2008) Co-option of a default secretory pathway for plant immune responses. Nature, 451, 835-840. https://doi.org/10.1038/nature06545
  21. Jahn, R. and Scheller, R.H. (2006) SNAREs--engines for membrane fusion. Nat. Rev. Mol. Cell Biol., 7, 631-643. https://doi.org/10.1038/nrm2002
  22. Jahn, R. and Fasshauer, D. (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature, 490, 201-207. https://doi.org/10.1038/nature11320
  23. Sollner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P. and Rothman, J.E. (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature, 362, 318-324. https://doi.org/10.1038/362318a0
  24. Fasshauer, D., Sutton, R.B., Brunger, A.T. and Jahn, R. (1998) Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. U.S.A., 95, 15781-15786. https://doi.org/10.1073/pnas.95.26.15781
  25. Bock, J.B., Matern, H.T., Peden, A.A. and Scheller, R.H. (2001) A genomic perspective on membrane compartment organization. Nature, 409, 839-841. https://doi.org/10.1038/35057024
  26. Wang, D., Weaver, N.D., Kesarwani, M. and Dong, X. (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science, 308, 1036-1040. https://doi.org/10.1126/science.1108791
  27. Deslandes, L. and Rivas, S. (2012) Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci., 17, 644-655. https://doi.org/10.1016/j.tplants.2012.06.011
  28. Nomura, K., Debroy, S., Lee, Y.H., Pumplin, N., Jones, J. and He, S.Y. (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science, 313, 220-223. https://doi.org/10.1126/science.1129523
  29. Kalde, M., Nuhse, T.S., Findlay, K. and Peck, S.C. (2007) The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. U.S.A., 104, 11850-11855. https://doi.org/10.1073/pnas.0701083104
  30. Yun, H.S., Kwaaitaal, M., Kato, N., Yi, C., Park, S., Sato, M.H., Schulze-Lefert, P. and Kwon, C. (2013) Requirement of vesicle-associated membrane protein 721 and 722 for sustained growth during immune responses in Arabidopsis. Mol. Cells, 35, 481-488. https://doi.org/10.1007/s10059-013-2130-2
  31. Assaad, F.F., Qiu, J.L., Youngs, H., Ehrhardt, D., Zimmerli, L., Kalde, M., Wanner, G., Peck, S.C., Edwards, H., Ramonell, K., Somerville, C.R. and Thordal-Christensen, H. (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell, 15, 5118-5129. https://doi.org/10.1091/mbc.E04-02-0140
  32. Pajonk, S., Kwon, C., Clemens, N., Panstruga, R. and Schulze-Lefert, P. (2008) Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem., 283, 26974-26984. https://doi.org/10.1074/jbc.M805236200
  33. Zhang, Z., Feechan, A., Pedersen, C., Newman, M.A., Qiu, J.L., Olesen, K.L. and Thordal-Christensen, H. (2007) A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant J., 49, 302-312. https://doi.org/10.1111/j.1365-313X.2006.02961.x
  34. Heese, M., Gansel, X., Sticher, L., Wick, P., Grebe, M., Granier, F. and Jurgens, G. (2001) Functional characterization of the KNOLLE-interacting t-SNARE AtSNAP33 and its role in plant cytokinesis. J. Cell Biol., 155, 239-249. https://doi.org/10.1083/jcb.200107126
  35. Zhang, L., Zhang, H., Liu, P., Hao, H., Jin, J.B. and Lin, J. (2011) Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One, 6, e26129. https://doi.org/10.1371/journal.pone.0026129
  36. Takemoto, D., Jones, D.A. and Hardham, A.R. (2003) GFPtagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J., 33, 775-792. https://doi.org/10.1046/j.1365-313X.2003.01673.x
  37. Koh, S., Andre, A., Edwards, H., Ehrhardt, D. and Somerville, S. (2005) Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J., 44, 516-529. https://doi.org/10.1111/j.1365-313X.2005.02545.x
  38. Yang, B., Gonzalez, L., Jr., Prekeris, R., Steegmaier, M., Advani, R.J. and Scheller, R.H. (1999) SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem., 274, 5649-5653. https://doi.org/10.1074/jbc.274.9.5649
  39. Fasshauer, D., Antonin, W., Margittai, M., Pabst, S. and Jahn, R. (1999) Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem., 274, 15440-15446. https://doi.org/10.1074/jbc.274.22.15440
  40. Uemura, T., Ueda, T., Ohniwa, R.L., Nakano, A., Takeyasu, K. and Sato, M.H. (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct., 29, 49-65. https://doi.org/10.1247/csf.29.49
  41. Reichardt, I., Slane, D., El Kasmi, F., Knoll, C., Fuchs, R., Mayer, U., Lipka, V. and Jurgens, G. (2011) Mechanisms of functional specificity among plasma-membrane syntaxins in Arabidopsis. Traffic, 12, 1269-1280. https://doi.org/10.1111/j.1600-0854.2011.01222.x
  42. Assaad, F.F., Huet, Y., Mayer, U. and Jurgens, G. (2001) The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J. Cell Biol., 152, 531-543. https://doi.org/10.1083/jcb.152.3.531
  43. Park, M., Touihri, S., Muller, I., Mayer, U. and Jurgens, G. (2012) Sec1/Munc18 protein stabilizes fusion-competent syntaxin for membrane fusion in Arabidopsis cytokinesis. Dev. Cell, 22, 989-1000. https://doi.org/10.1016/j.devcel.2012.03.002
  44. Karnik, R., Grefen, C., Bayne, R., Honsbein, A., Kohler, T., Kioumourtzoglou, D., Williams, M., Bryant, N.J. and Blatt, M.R. (2013) Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic. Plant Cell, 25, 1368-1382. https://doi.org/10.1105/tpc.112.108506
  45. Barr, F.A. (2013) Review series: Rab GTPases and membrane identity: causal or inconsequential? J. Cell Biol., 202, 191-199. https://doi.org/10.1083/jcb.201306010
  46. Nielsen, M.E., Feechan, A., Bohlenius, H., Ueda, T. and Thordal-Christensen, H. (2012) Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proc. Natl. Acad. Sci. U.S.A., 109, 11443-11448. https://doi.org/10.1073/pnas.1117596109
  47. Bohlenius, H., Morch, S.M., Godfrey, D., Nielsen, M.E. and Thordal-Christensen, H. (2010) The multivesicular bodylocalized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in barley. Plant Cell, 22, 3831-3844. https://doi.org/10.1105/tpc.110.078063
  48. Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A. and Jurgens, G. (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 112, 219-230. https://doi.org/10.1016/S0092-8674(03)00003-5

Cited by

  1. Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells vol.69, pp.1, 2018, https://doi.org/10.1146/annurev-arplant-042817-040233