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Abstract- This paper focuses on design of nonlinear power
plant controller using immune based multiobjective fuzzy
approach. The thermal power plant is typically regulated
by the fuel flow rate, the spray flow rate, and the gas
recirculation flow rate. However, Strictly maintaining the
steam temperature can be difficult due to heating value
variation to the fuel source, time delay changes in the
main steam temperature, the change of the dynamic
characteristics in the steam-turbine system.

Up to the present time, PID Controller has been used to
operate this system. However, it is very difficult to
achieve an optimal PID gain with no experience, since the
gain of the PID controller has to be manually tuned by
trial and error. These parameters tuned by multiobjective
based on immune network algorithms could be used for
the tuning of nonlinear power plant.

Keywords: Fuzzy control; Power plant control; Immune
algorithm, Multiobjective control.

1. INTRODUCTION

The operational strategy of electric power plants was
traditionally based upon the concept of generating
electric power with a reliability and little regard for
fuel economy, since fuel was cheap and abundant.
However, the utility industry began to show more
interest for a deeper understanding of their own power
plants with the objective of improving their economic
behavior. In the area of steam power plant control,
most of the research has been done by manufactures
and is protected under proprietary rights. In particular,
any procedure to be implemented in a power plant
should be tested in some kind of model before actual
implementation. In the fossil-fired thermal power plant,
a control system to keep the steam temperature
deviations within specified ranges around their rated
values is required in order to maintain the nominal
efficiency and ensure the safety and equipment life of
the plant. In the fossil-fired power plant, high-pressure
and high temperature boilers are used for generation of
electric power large capacity. Also, steam temperature
deviation must be kept within #5°C in order to
maintain boiler operating efficiency and equipment life
time as well as to ensure safety.

Up to now, a Proportional — Integral — Derivative (PID)
controller has been used in the steam temperature
control of boiler. However, it cannot effectively control
such a complicated or fast running system, since the
response of a plant depends on only the gain P, I, and

D. This paper addresses whether an intelligent tuning
method by multiobjective fuzzy based on a immune
network algorithms can be used effectively in tuning
for nonlinear power plant system.

2. CONTROL CHARACTERISTICS OF
THERMAL POWER PLANT
FOR CONTROLLER DESIGN

A. Control Characteristics In The Thermal Power Plant
In the coal-fired thermal power plant, there are six
manipulated variables: main steam flow, feedwater
flow, fuel flow, air flow, spray flow, and gas
recirculation flow. In addition, there are five controlled
variables; generator output, main steam pressure, main

steam temperature, exhaust gas o0, density, and

reheater steam temperature [6]. Therefore, the
coal-fired power plant is a multi-input and multi-output
system, which must alter the generator output in
response to changes in the load demand dictated by the
DCS in a central load dispatching office.

Temperature system for the Boryong power plant and
is composed of three subsystems such as S/H (Super
Heater) tube control subsystem, Platon S/H tube
control subsystem, ECO tube control system. The each
subsystem has a feedforward loop and a
feedback-control system. In the thermal power plant,
strict control of the steam temperature is critical to
maintain safety and avoid thermal stress, which leads
to premature failure of the steam turbines. The main
steam temperature typically is regulated by the fuel
flow rate and the spray flow rate, and the reheater
steam temperature is regulated by the gas recirculation
flow rate. However, the following problems have been
identified in steam temperature control [1, 2].

1) The heating value of coal, which cannot be
measured on-line, varies according to the coal source.
The coal source changes within a period ranging from a
week to a month and the heating value of the coal can
vary from approximately 90% to 110% of a typical
value during the course of a day. These factors make it
difficult to provide accurate control of the heat input to
the boiler.

525



H/P TBN L/P TBN MW demand
Generator >»
w
PLT S/H u2
P
_ Y
R/H F(x)
1 _ +
- Spray
+ \! IR E
S41C ——>0)—> Q + P4\ U +
PIl
Water
F(x)
Main Water
] steam

Fig. 1. Block diagram of nonlinear power plant system.

(2) Since the coal pulverizing process proceeds slowly
and since the heat capacity of coal-fired plants is larger
than that of oil or gas burning plants, the time delay of
changes in main steam temperature versus the changes
in fuel flow rate greatly exceeds the delay experienced
in oil or gas burning plants. If the load changes rapidly,
the conventional PID controller adjusts the input
variables to values corresponding to the boiler load,
causing steam temperatures deviation from its set point
(more than £5°C).

(3) The main steam temperature control system and the
reheater steam temperature control system may
interfere with each other. This means that overall
temperature control comprises a multi-input and output
interference system.

(4) Flow rates in water and steam fluctuate widely
during load-following operation. For example, both the
time constant and the gain vary by more than a factor
of two during a load-following operation.

B. Steam Temperature Control Approaches

In Power Plant Boiler

In the power plant, the strategy used for the control of
steam temperature for power plant boilers is normally
recommended by the boiler manufacturer. The normal
steam temperature control requirement has to sustain
the temperature within +5°C . Fig. 1 shows two
methods of controlling the superheater temperature
using a water spray in the power plant.

C. Superheated Steam Temperarure Control

Fundamentally, the temperature of the final
superheated steam is a function of the boilers firing
rate and the steam flow, and of the design of the

heating surfaces and the plant generally.

The control systems for the final superheated steam
temperature in boilers rely almost exclusively on
attemperators-usually of the spray type. A cascade
control system is used to overcome the long time
constants of the secondary superheater in steam
temperature control.

D. Multistage Superheaters For Steam Temperature Control

In boilers with several stages of superheating and
employing cascade systems for each section as shown
in Fig. 1, spray attemperators are normally provided
between the major superheating banks. The first key
condition in this system is to generate the desired value
for the secondary superheater outlet temperature
controller from the outlet of the final steam
temperature controller. The second point is the
maximum selector block interposed between the
- first-stage main controller, PID and its slave, PID.

3. NONLINEAR POWER PLANT MODEL

For this study the following nonlinear model is used
[11];

dp = _Alspl/S + Azul - A3u3 + A4L’eve]

temp
;7 water + AST

Sfeedwater

% 10u, p"2 — AgF 2o

steam

dt
dl .
i Azus + Aguy + Aguy, — Ajop® — Ay L%, (1)
low
- Al2 (Llsrfl,ir )Z - Al3Fs{e‘z)mz
where
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p =drum pressure,

F/% = steam flow to a HP turbine,

steam
Llevel

water

u, = fuel (pulverized coal) input,

= drum water level,

u, = control valve displacement,
uy = feed water input,
T }Z"d’:m,e, = feed water input temperature

The system parameters are

4, =0.0193 4, =0.014524 4; =0.000739

A, =0.00121 A5 =0.000176 Ag =0.78576

A; =0.00863 Ag =0.002 A = 0.463

Ao =0.000006 4, =0.00914 4, =0.000082

Ay =0.007328 Tfr%  =0.288°C
dp

o ~0.014524u, —0u, +0.000736u, —0.00193sp"*
+0.00121L"* +0.000176T"

Jeedwater
% o Ou +10u,p™ — 785F >
dt

% = 0.002u +0.463u, +0.00863u; ~0.000006 p> (2)

~0.009t42/2 —0.000082(L2e! f —0.00732F 22

water water Steam

4. IMMUNE ALGORITHMS BASED
MULTIOBJECTIVE FUZZY OPTIMIZATION

A. Muitiobjective Fuzzy Optimization

The multiobjective fuzzy optimization problem and
fuzzy convex decision-making principles is stated. The
general multiobjective fuzzy optimization can be
defined as finding x which minimizes f(x)such that

g;€b.
F®) =[G, (55 [ () ] (3)

Eq. (3) is a vector objective function and g ;(x) are

constraints, with the symbol indicating that the
constraints mean fuzzy information [12].

The first stage of the multiobjective fuzzy optimization
is to fuzzify the objective functions and the fuzzy
constrains. The membership function for the fuzzy
objective function is given by

K if f,(x)> ™
- L™
n (=3 =g :
if £ < i) S £
1 if £

4
where 77, (x):R"—> [0,1] and 7,(x)is a mapping
from real number set R” to the closed interval [0, 1],
which is a measure of the degree of satisfaction for
any x€ R”in the irh fuzzy objective function. f™" and

;7 represent the minimum and maximum values for

the objective function, respectively and they are
defined as

S =min; f,(x) and £ =max, f,(x) (5)

where x’is the solution for each of the objective
functions in the crisp domain.

The fuzzy constraints membership function is defined
as

(0 if g;(x)>b;+d,

- gj(x)_bj
dj ,

if b;<g;(x)<bh;+d,;
|1 if g;(x)<b;

”gi (x) =

(6)
where 7,,(x): R" —[0,1] and 7,,(x)is the mapping

from the real number set R” to the closed interval
[0,1], which is an indication of the degree of
satisfaction for any xe& R"in the jth fuzzy constraint.
n,(x)=1 means complete satisfaction, 7,,(x)=0 is
not satisfied and values between 0 and 1 show the
degree of satisfaction of the jth constraint. The
allowable tolerances for each fuzzy constraint are
defined by d;

B. Fuzzy Decision-Making
The objective functions and constraints have been
defined as fuzzy subsets in the space of alternatives
using linear membership functions #,(x) and
n, (x) » respectively. The optimal decision is made by
selecting the best alternative from the fuzzy decision
space D characterized by the membership function 77, .
That is, find the optimum x~ which maximizes 7,
defined mathematically as

Mp(x")=max7n,(x), 7,€[0,1]. (7
The fuzzy decision can be made by employing one of
the three generalized fuzzy decisions: intersection
decision, convex decision, and product decision.

The convex decision [11] is given mathematically as
follows

D =aof (x)+ Bg(x) (3)
where o and f are weighting factors, which satisfy
a+f=1 a=0£20. (9)

For any fuzzy optimum set points, the weights ¢,
and f; are given so that a linear weighted sum can

be achieved. That is, the membership function of the
convex decision is defined as

UD(X):iaim +iﬁ,‘77g, > (10)
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k m
2@+ 2p =1,
j=i

i=1
a,- 20 i= 1,2,...,k 1
B;20 j=12...m" (1)

From Eq. 11, the multiobjective fuzzy optimization
problem can be transformed into the following
single-objective nonfuzzy optimization problem:

max), (1) = D) + D By () (12)

g(x)<b; +d;, j=12,..m. (13)

C. Membership Weighting

A membership weighting strategy is defined for a
convex-decision multiobjective fuzzy optimization
problem. The membership weighting factor is
formulated as follows:

Wp=1-1n,(x) and y, =1-7,(x)
ng

G =—2 and f=—B— (14
Zi:l l/,ﬁ zj:l l//gi
k m
2o+ 2B =1
i=l Jj=t
@20 i=12..k
(13)

B:20 j=12..m

These equations represent the problem in which the
designer is not certain how to quantify the relative
importance of each objective. It can be easily extended
to cases where a particular objective or subset of
objectives are more important, although the designer
has no means of quantifying their relative importance.
Using convex decision, the multiobjective fuzzy
optimization problem for selecting the control laws
u,u,, and u, for Eq. 2 can be formulated in the

following manner.

From the above specifications, rise time and settling
time are defined as fuzzy objectives and peak
overshoot, phase margin, and gain margin as
constraints.

All the constraints are nonfuzzy and the membership
functions corresponding to the fuzzy objective
functions are defined as

0 if t > 45
7, (x) = 1-5—;623 if 25< 1 <45t  (16)
1 if <25
and
0 if 1> 25
(=17
n@={ -5y 17<r <25 (1))
1 if 1 <17

The convex decision for multiobjective fuzzy
optimization of Eq. 12 is used, since there are no fuzzy
constraints ( f; =0). To achieve the highest degree of
membership to th fuzzy convex decision set, the
multiobjective fuzzy optimization is formulated as;
find w,u,,u, which maximize 7, ,=an, +a.n, ,

12 723 7

where «, are defined Eqgs. 14, 15.

D. Dynamics Of Immune System

In the immune system, the level to which a B cell is
stimulated relates partly to how well its antibody binds
the antigen. We take into account both the strength of
the match between the antibody and the antigen and the
B cell object’s affinity to the other B cells as well as its
enmity. Therefore, generally the concentration of i-th
antibody, which is denoted by &,, is calculated as

follows [3]:

N
az m;,6,()
£O_| =, 50 (18a)
”azmik5k(t) +pn; -y,
k=1
ds () 1
A (18b)
1+ exp(O.S - m}
at

where in Eq. (18), N is the number of antibodies, and
& and [ are positive constants. m; denotes

affinities between antibody j and antibody i (i.e. the
degree of interaction), m, represents affinities between
the detected antigens and antibody i, respectively.

E. Immune Based Multiobjective Fuzzy Optimization
[step 1] Initionalization and Recognize pattern of
reference as antigen: The immune system recognizes
the invasion of an antigen, which corresponds to input
data or disturbances in the optimization problem.
Code the selected E, D, R, and TS with binary and
string for response specification of reference model as

the following Fig. 2 [9, 10].
8
, 01010201100 l
TS

D R
MUMIDHUD l l 11000101010 l
D F n R

e e )
Antign F?? ] ” ‘ 7 I 11010101100600101011001100610101002010101100
'

E
l 11010101100 -,

P 1

Epitode

Fig. 2. Coding structure for antigen.

[step 2] Product of antibody from memory cell:

The immune system produces the antibodies which
were effective to kill the antigen in the past, from
memory cells. This is implemented by recalling a past
successful solution.

Coding of antibody consists of P(a), I £), D(77) and

E, D, R, and TS as the following Figs. 3 and 4. E, D, R
and TS is fitness function defined by between reference
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model and response.
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Fig. 3. Structure of antibody group.

-1 ;, : the P value of affinity in antibody j
1 ,] : the I value of affinity in antibody j
1 ;) : the D value of affinity in antibody |

Pj : the value of paratope in antibody j

A : the value of epitope in antigen
® : exclusive or operator
@ : mutation and crossover

j : the length of antibody from 1
cut_delta : Positive constant

k w
- LIy =F(@FEm —m.)al)) (19
Frev () = Present value:if x2 A,
Previous value: if x <A,

- llf II_] ‘Ij+l|2Adelta
0 lf |I_1 -Ij+l|2Adelta

D(x) if x=1
D(x) = ) f
I, if x=0
Flxk) = {l, j~lf x20: Sttmulatmfz
0, j+1 x<0: Suppression
mj=Pj®A

[step 3] Initialize antibody group (MCELL) for
parameter P=0-1, I=1-1, D=0-1 of the given condition
to the desired response of plant.

[step 4] Calculation of affinity between antibodies: The

affinities obtained by Eq. (19) and m; = P ®A4 for
searching the optimal solution. Arrange with the

number of order of affinity value. Select randomly the
number of antibody, 25 among the number of MCELL,

100 and calculate affinity, « between both

antibodies.

i (" antibodyl [m [n oo [eioirirs: |
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Fig. 4. Structurc of antibody group.
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Fig. 5. Structure of the sclected antibody group.

[step 5] Stimulation of antibody: To capture to the
unknown antigen, new lymphocytes are produced in
the bone marrow in place of the antibody eliminated in
step 5. The expected value 17, of the stimulation of

the antibody is given by
m
7 =—= (20)
2

where o, is the concentration of the antibodies. The

concentration is calculated by affinity based on
phenotype but not genotype because of the reduction of
computing time. So, @, is represented by

sum of antibodies with same affinity as m
g, = .
* sumof antibodies
21

[step 6] Stimulation of Antibody: To capture the
unknown antigen, new lymphocytes are produced in
the bone marrow in place of the antibody eliminated in
step S.

5. SIMULATIONS AND DISCUSSIONS

A. The Response Characteristics By The Immune Algorithms
Based Multiobjective On Ojf-line Of The Thermal Power Plant
Fig. 6 and Fig. 7 shows the learning generation of
immune network response to obtain optimization and
control results on off line by the proposed control
method. Figs. 8, 9 are results of learning and response
using another parameter

Fig. 10 shows steam temperature response to
disturbance (air flow, fuel flow) to setpoint steam
temperature, 250[ o C ] using the proposed controller.
Fig. 11 represents steam temperature response to
disturbance (feedwater flow) to setpoint steam
temperature, 423[ o C ] using the proposed controller.

@05

P :

Shots "

LY

_— i | i K A i

Fig. 6. Relationship between affinity and gencration to lcarning on
Immune algorithm.
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Fig. 7. Response to average values on parameter learning of
immune network (off line).

Fig. 8. Relationship between affinity and generation to learning on
Immune algorithm.
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Fig. 9. Response to average values on parameter learning of
immune network (off line).

C. The Response Characteristics Using Operating Data Of

The Thermal Power Plant
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Fig. 10. Steam temperature response to disturbance using the
proposed controller (disturbance: air flow, fuel flow).
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Fig. 11. Stcam temperaturc response to disturbance using the
proposed controller (disturbance: fecdwater flow).

6. CONSULIONS

Up to now, the P1D controller has been used to operate
the power plants. However, achieving an optimal PID
gain is very difficult for the steam temperature control

loop with disturbances since the gain of the PID
controller has to be tuned manually by trial and error.
To design an optimal controller that can actually be
operated on a generating system, we suggest an
immune algorithm based multiobjective fuzzy control
method. The suggested controller can be used
effectively in the power plant, also the controller needs
no feedforward or cascade loop.
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