• Title/Summary/Keyword: Immerged rate

Search Result 6, Processing Time 0.196 seconds

Study on the Heat Transfer Characteristics of Immerged and Falling Flows on Helical Tubes (헬리컬관외 침전 및 적하 열전달 특성에 관한 연구)

  • 황승기;윤상국;김동혁;이승갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.225-232
    • /
    • 2001
  • An experimental study is carried out to investigate the characteristics of heat transfer of outside helical tubes. The main heat exchanger consists of twelve curved columns with each 300mm diameter and the total length of 1.2m copper tube having an outer diameter of 19.05mm with 1.5mm thickness. Water flows down the outside of helical tube, where flow patterns are the vertical film falling flow, immerged flow, and mixed-flow which is the combination of film falling flow and immerged flow. Refrigerant 11 flow the inside of the tube countercurrently. The experimental range of inside flow rate is 1.7~3.2$\ell$/min and outside flow rate is 21-33$\ell$/min. The results are presented as Nusselt number with corresponding Reynolds number for variety of outside and inside flow rates. The heat transfer rates of the mixed flow are 8 to 56% higher than those of film falling flow or immerged flow only. Interpretation of the results is given on the basis of physical reasoning and the correlation equations.

  • PDF

A Study on the Formation of Carbide Layers on Steels Immerged in Fused Borox Bath Containing Fe-V (Fe-V을 첨가한 용융 붕사욕에서 강의 탄화물 형성에 관한 연구)

  • Lee, Byung-Kwon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.2
    • /
    • pp.19-26
    • /
    • 1991
  • This study has been constructed to establish the formation of the VC layer on various steels by immersion in fused borax bath containing Fe-V powder. The result obtained from the experiment are as follows. (1) The carbide is supposed to grow on the front surface of the carbide layers by the reaction between carbide-forming elements dissolved in the fused borax and carbon atoms successively supplied through the layer from the matrix. (2) The growth rate of the carbide layers was controlled by the diffusion rate of C in the carbide layer and C content in the matrix. (3) Carbide layer formed on the surface of the specimen is VC layer and the hardness of this layer is above $H_v$ 3000.

  • PDF

Corrosion Behavior of Boron-Carbon-Nitride Films Synthesized by Magnet Sputtering (스퍼터링법으로 합성한 BCN 박막의 내식성)

  • Byon E.;Son M. S.;Lee G. H.;Kwon S. C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.229-233
    • /
    • 2003
  • Boron-Carbon-Nitrogen (B-C-N) system is an attractive ternary material since it has not only an extremely high hardness but also a number of other prominent characteristics such as chemical inertness, elevated melting point, and low thermal expansion. In this paper, the corrosion behavior of B-C-N thin films in aqueous solution was investigated B-C-N films with different composition were deposited on a platinum plate by magnetron sputtering in the thickness range of 150-280 nm. In order to understand effect of pH of solutions, $BC_{2.\;4}N$ samples were immerged in 1M HCl, 1M NaCl, and 1M NaOH solution at 298k, respectively. BCN samples with different carbon contents were exposed to 1M NaOH solutions to investigate effect of chemical composition on corrosion resistance. Corrosion rates of samples were measured by ellipsometry, From results, optical constant of $BC_{2,\;4}N$ films was found to be $N_2=2.110-0.295i$. The corrosion rates of $Bi_{1.\;0}C_{2.\;4}N_{1.\;0}$ films were NaOH>NaCl>HCl in orders. With increasing carbon content in B-C-N films, the corrosion resistance of B-C-N films was enhanced. The lowest corrosion rate was obtained for $B_{1.\;0}C_{4.\;4}N_{1.\;9}$ film.

The Effect of Passing Aged Years to the Polarization Characteristics of Embedded Steel Bar of Mortar Specimen(W/C:0.4) (몰타르 시험편(W/C:0.4) 내부철근의 분극특성에 미치는 재령년수의 영향)

  • Moon, Kyung-Man;Won, Jong-Pil;Park, Dong-Hyun;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • The structures of reinforced concrete has been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as sea water, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of inner steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, multiple mortar test specimen(W/C:0.4) with six types having different cover thickness each other was prepared and was immerged in seawater solution for five years to evaluate the effect of cover thickness and immersion years to corrosion property of embedded steel bar. And the polarization characteristics of these embedded steel bars was investigated using electrochemical methods such as measuring corrosion potential, cathodic polarization curve, and cyclic voltammogram. At the beginning of immersion, the corrosion potentials exhibited increasingly nobler values with increasing cover thickness. However, after immersed for 5 years, the thicker cover of thickness, the corrosion potentials shifted in the negative direction, and the relationship between corrosion potential and cover thickness was not in good agreement with each other. Therefore, it is considered that the thinner cover of thickness, corrosive products deposited on the surface of the embedded steel bar plays the role as a resistance polarization which is resulted in decreasing the corrosion rate as well as shifting the corrosion potential in the positive direction. As a result, it seemed that the evaluation which corrosion possibility of the reinforced steel would be estimated by only measuring the corrosion potential may not be a completely desirable method. Therefore, it is suggested that we should take into account various parameters, including cover thickness, passed aged years as well as corrosion potential for more accurate assessment of corrosion possibility of reinforced steel which is exposed to partially or fully in marine environment for long years.

In Vitro Plant Regeneration for Mass Propagation of Epimedium koreanum Nakai (삼지구엽초의 다량번식을 위한 기내 식물체 분화)

  • Han, Young-Hee;Choi, Byoung-Ryourl;Soh, Ho-Seob;Lee, Seong-Jae;Choi, Young-Jin;Kim, Se-Young
    • Horticultural Science & Technology
    • /
    • v.18 no.6
    • /
    • pp.834-838
    • /
    • 2000
  • As an endeavor to establish a micropropagation system for Epimedium koreanum Nakai., this study was carried out to define methods to disinfect its explants and media for callus induction, proliferation and plant regeneration. The lowest infection rates by fungi or bacteria on apical and axillary bud explants of rhizome were observed when they were immerged in 0.3% NaOCl solution for 20 min after soaked in 0.1% $AgNO_3$ solution for 30 min, but leaf explants were seldom infected with fungi or bacteria by this disinfectant method. The highest rate of plantlet formation was obtained from the explants disinfected in 0.3% NaOCl solution for 20 min after soaked in 0.1% $AgNO_3$ solution for 60 min for tip buds and in 0.1 % $AgNO_3$ solution for 30 min for axillary buds of rhizome. Induction rate of callus was the highest from the explants disinfectd in 0.3% NaOCl solution for 20 min after soaked in 0.2% $AgNO_3$ solution for 15 min. Callus growth was proper in a modified 1/2 MS medium including half strength of $NH_4NO_3$ with $0.02-0.2mg{\cdot}L^{-1}$ BA and $2.0mg{\cdot}L^{-1}$ NAA. Low rate of plantlet regeneration was obtained in 1/2 UM or 1/2 White medium with $2.0mg{\cdot}L^{-1}$ BA and $0.2mg{\cdot}L^{-1}$ AA.

  • PDF

Study of Solidification by Using Portland and MSG(micro silica grouting) Cements for Metal Mine Tailing Treatment (금속 광미 처리를 위한 포틀랜드 시멘트와 MSG(micro silica grouting) 시멘트 고형화 실증 실험 연구)

  • Jeon, Ji-Hye;Kim, In-Su;Lee, Min-Hee;Jang, Yun-Young
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.699-710
    • /
    • 2006
  • Batch scale experiments to investigate the efficiency of the solidification process for metal mine tailing treatment were performed. Portland and MSG (micro silica pouting) cements were used as solidifier and three kinds of mine tailings (located at Gishi, Daeryang, and Aujeon mine) were mixed with cements to paste solidified matrices. Single axis com-pressible strengths of solidified matrices were measured and their heavy metal extraction ratios were calculated to investigate the solidification efficiency of solidified matrices created in experiments. Solidified matrices ($5cm{\times}5cm{\times}5cm$) were molded from the paste of tailing and cements at various conditions such as different tailing/cement ratio, cement/water ratio, and different cement or tailing types. Compressible strengths of solidified matrices after 7, 14, and 28 day cementation were measured and their strengths ranged from 1 to $2kgf/mm^2$, which were higher than Korean limit of compressible strength for the inside wall of the isolated landfill facility ($0.21kgf/mm^2$). Heavy metal extractions from intact tailings and powdered matrices by using the weak acidic solution were performed. As concentration of extraction solution for the powdered solidified matrix (Portland cement + Gishi tailing at 1:1 w.t. ratio) decreased down to 9.7 mg/L, which was one fifth of As extraction concentration for intact Gishi tailings. Pb extraction concentration of the solidified matrix also decreased to lower than one fourth of intact tailing extraction concentration. Heavy metal extraction batch experiments by using various pH conditions of solution were also performed to investigate the solidification efficiency reducing heavy metal extraction rate from the solidified matrix. With pH 1 and 13 of solution, Zn and Pb concentration of solution were over the groundwater tolerance limit, but at pH $1{\sim}13$ of solution, heavy metal concentrations dramatically decreased and were lower than the groundwater tolerance limit. While the solidified matrix was immerged Into very acidic or basic solution (pH 1 and 13), pH of solution changed to $9{\sim}10$ because of the buffering effect of the matrix. It was suggested that the continuous extraction of heavy metals from the solidified matrix is limited even in the extremely high or low pH of contact water. Results of experiments suggested that the solidification process by using Portland and MSG cements has a great possibility to treat heavy metal contaminated mine tailing.