Study of Solidification by Using Portland and MSG(micro silica grouting) Cements for Metal Mine Tailing Treatment

금속 광미 처리를 위한 포틀랜드 시멘트와 MSG(micro silica grouting) 시멘트 고형화 실증 실험 연구

  • Jeon, Ji-Hye (Department ol Environmental Geosciences, Pukyong National University) ;
  • Kim, In-Su (Department ol Environmental Geosciences, Pukyong National University) ;
  • Lee, Min-Hee (Department ol Environmental Geosciences, Pukyong National University) ;
  • Jang, Yun-Young (Department ol Environmental Engineering, Kwangwoon University)
  • 전지혜 (부경대학교 환경지질과학과) ;
  • 김인수 (부경대학교 환경지질과학과) ;
  • 이민희 (부경대학교 환경지질과학과) ;
  • 장윤영 (광운대학교 환경공학과)
  • Published : 2006.12.30

Abstract

Batch scale experiments to investigate the efficiency of the solidification process for metal mine tailing treatment were performed. Portland and MSG (micro silica pouting) cements were used as solidifier and three kinds of mine tailings (located at Gishi, Daeryang, and Aujeon mine) were mixed with cements to paste solidified matrices. Single axis com-pressible strengths of solidified matrices were measured and their heavy metal extraction ratios were calculated to investigate the solidification efficiency of solidified matrices created in experiments. Solidified matrices ($5cm{\times}5cm{\times}5cm$) were molded from the paste of tailing and cements at various conditions such as different tailing/cement ratio, cement/water ratio, and different cement or tailing types. Compressible strengths of solidified matrices after 7, 14, and 28 day cementation were measured and their strengths ranged from 1 to $2kgf/mm^2$, which were higher than Korean limit of compressible strength for the inside wall of the isolated landfill facility ($0.21kgf/mm^2$). Heavy metal extractions from intact tailings and powdered matrices by using the weak acidic solution were performed. As concentration of extraction solution for the powdered solidified matrix (Portland cement + Gishi tailing at 1:1 w.t. ratio) decreased down to 9.7 mg/L, which was one fifth of As extraction concentration for intact Gishi tailings. Pb extraction concentration of the solidified matrix also decreased to lower than one fourth of intact tailing extraction concentration. Heavy metal extraction batch experiments by using various pH conditions of solution were also performed to investigate the solidification efficiency reducing heavy metal extraction rate from the solidified matrix. With pH 1 and 13 of solution, Zn and Pb concentration of solution were over the groundwater tolerance limit, but at pH $1{\sim}13$ of solution, heavy metal concentrations dramatically decreased and were lower than the groundwater tolerance limit. While the solidified matrix was immerged Into very acidic or basic solution (pH 1 and 13), pH of solution changed to $9{\sim}10$ because of the buffering effect of the matrix. It was suggested that the continuous extraction of heavy metals from the solidified matrix is limited even in the extremely high or low pH of contact water. Results of experiments suggested that the solidification process by using Portland and MSG cements has a great possibility to treat heavy metal contaminated mine tailing.

폐금속광산 주변에 산재한 광미를 고화제를 이용하여 영구 매립하는 고형화 처리 공정의 타당성을 평가하기 위하여, 경상북도에 위치한 지시, 대량, 어전 금속 폐광산 주변 광미를 대상으로 3 종류의 시멘트 고화제를 이용하여 고화체를 양생하고, 고화체의 압축강도 및 중금속 용출을 측정하여 고화체의 고형화 효율을 규명하였다. 포틀랜드 시멘트와 MSG(micro silica grouting) 계열 시멘트를 고화제로 사용하여 광미와 1:1(w.t.) 혼합하여 양생한 고화체의 압축강도 실험 결과 양생 기간이 14일 인 모든 고화체의 일축압축강도는$1{\sim}2kgf/mm^2$를 나타내어, 현행 폐기물관리법(20 조 관련)에서 규정하고 있는 차단형 매립시설의 내부막의 압축강도 기준인 $0.21kgf/mm^2$ 보다 높은 것으로 나타났다. 광미와 혼합하여 성형한 고화체와 순수한 광미를 대상으로 토양공정시험법에서 제시한 약산 추출법으로 중금속 용출을 실시하여 광미와 광미로 성형한 고화체의 중금속 용출 농도 차이를 비교하였다. 고화제와 광미를 1:1(w.t.)로 혼합하여 성형한 고화체의 경우 As와 Pb의 용출농도가 약 $3{\sim}5$배 감소하는 것으로 나타나 약산 추출법에 의한 중금속용출은 고화체 성형 시 뚜렷한 감소 효과가 있었다. 다양한 pH를 갖는 수용액을 이용하여, 광미와 고화제를 혼합하여 양생한 고화체의 시간에 따른 수용액으로의 중금속 용출 농도를 측정하였다. 수용액의 pH가 1과 13인 강산/강염기 용액에서 일부 중금속의 용출 농도가 지하수 생활응수 기준치를 초과하였으나, pH가 $3{\sim}11$인 경우에는 중금속 용출이 급격히 감소하여 모두 지하수 생활용수 기준치 이하를 나타내었다. pH가 1과 13인 수용액의 경우에도 고화체와 반응하는 시간이 증가할수록 고화체의 완충(buffering) 효과에 의해 수용액의 pH가 변화하여 $9{\sim}10$을 나타내었다. 이러한 결과는, 현장에서 pH가 1과 13인 수계와 광미로 형성된 고화체가 접촉한다 하여도, 고화체의 완충 효과에 의해 시간이 지남에 따라 접촉수의 pH가 변하여 고화체로부터 지속적인 다량의 중금속 용출이 제한될 수 있음을 의미한다.

Keywords

References

  1. Chae, S., Jang, Y., Bae, I. and Ru, K. (2006) Synthesis and characterization of polyphase waste form to immobilize high level radioactive wastes. Economic and Environmental Geology. 39, p. 173-180
  2. Conner, J.R. (1990) Chemical Fixation and Solidification of Hazardous Wastes. Van Nostrand Reinhold, New York, p. 293-298
  3. Diet, J-N., Moszkowicz, P. and Sorrentino, D. (1998) Behaviour of ordinary Portland cement during the stabilization/solidification of synthetic heavy metal sludge: macroscopic and microscopic aspects. Waste Management 18, p. 17-24 https://doi.org/10.1016/S0956-053X(98)00003-8
  4. EPA (2000) Solidification/Stabilization Use at Superfund Sites. EPA-542-R-00-010
  5. Glasser, F.P. (1997) Fundamental aspects of cement solidification and stabilization. Journal of Hazardous materials, 52, p. 151-170 https://doi.org/10.1016/S0304-3894(96)01805-5
  6. Ju, S. and Kim, K. (2002) A study on the comparison of leaching methods and stability of cement mortar solidified cadmium sludge. Korean Journal of Sanitation 17, p. 21-30
  7. Jung, J., Kang, D., Kim, Y., Kim, C., Kim., H., No, G., Jang, S., Huo, K, Lee, N. and Cho, J. (2000) Waste Treatment, Dongwhagisul, Inc., Seoul, 619p
  8. Kang, M., Lee, P., Choi, S. and Shin, S. (2003) Heavy metal retention by secondary minerals in mine waste rocks at the abandoned Seobo mine. Economic and Environmental Geology, 36, p. 177-189
  9. KARICO (Korea Agricultural and Rural Infrastructure Corporation) (2004) Lab Scale Experiment for Heavy Metal Contaminated Site at Dalcheun, Ulsan. Final Report to Korean soil and groundwater society, 322p
  10. Kim, C. and Lee, S. (1994) Technology of waste solidification by using cements. Science and Technology of Ceramic materials, 9, p. 517-528
  11. Korea Institute of Machinery and Materials (1997) Hazardous Waste Treatment Technology-Hazardous Waste Solidification Technology. Ministry of Environment
  12. Korean Standards Association (2005) Korean Industrial Standard
  13. Li, X.D., Poon, C.S., Sun, H., Lo, I.M.C. and Kirk, D.W (2001) Heavy metal speciation and leaching behavior in cement based solidified/stabilized wasted material. Journal of Hazardous materials, A82, p. 215-230
  14. Min, K., Lee, P, Chin, H. and Yeon, K. (1999) A Study on utilization of metal mine tailing for polymer cement mortars. Economic and Environmental Geology. 32, p, 13-18
  15. Poon, C.S. (1989) A Critical Review of Evaluation Procedures for Stabilization/Solidification Process. Environmental Aspect of Stabilization and Solidification of Hazardous and Radioactive Wastes. ASTM STP 1033, P. L. Cote and T.M. Gillan, Eds., American Society for Testing and Materials, Philadelphia, p. 114-124
  16. Qiao, X.C., Poon, C.S. and Cheeseman, C.R. (2006) Transfer mechanisms of contaminants in cementbased stabilized/solidified wastes. Journal of Hazardous Materials, B129, p. 290-296
  17. Shin. H. (1994) Treatment of Hazardous Waste by Using Cement Solidification. Technology and Comments, KIST
  18. Singh, T.S. and Pant, K.K (2006) Solidification/Stabilization of arsenic containing solid wastes using portland cement, fly ash polymeric materials. Journal of Hazardous Materials, B131, p. 29-36
  19. Yeon, I., Ju, S. and Kim, K (1999) The characteristics of solidification and leachability of lead sludge. Korean Journal of Sanitation. 14, p. 22-30
  20. Yousuf, M., Mollah, A., Vempati, R.K, Lin, T.C. and Cocke, D.L. (1995) The interfacial chemistry of Solidification/Stabilization of metals in cement and polzzolanic material system. Waste Management, 15(2), p. 137-148 https://doi.org/10.1016/0956-053X(95)00013-P