• Title/Summary/Keyword: Imine

Search Result 135, Processing Time 0.023 seconds

The role of chemical bond as the preparation of polynuclear metal dendritic molecule for PDD or PDT

  • Choi, Chang-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.391-393
    • /
    • 2022
  • The preparation of polynuclear metal dendritic molecule for photodynamic diagnosis(PDD) or photodynamic therapy(PDT) has been interested on design and synthesis of metal-to-metal long ranged macromolecule. Herein, imine bond or amide bond as chemical bond is an important role on the construction of energy transfer or electron transfer system. Therefore, we will be presented on the role of chemical bond for the preparation of polynuclear metal dendritic molecule.

  • PDF

Potentiometric Determination of Postssium Ion Using 15-Crown-5 Derivatives with Anthracene for the Selective Material (안트라센을 포함하는 15-Crown-5 유도체를 이온선택성 물질로 이용한 칼륨이온의 전위차법 정량)

  • Bae, Zun-Ung;Lee, Sang-Bong;Chang, Seung-Hyun;Kim, Ui-Rak
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.1
    • /
    • pp.31-39
    • /
    • 2001
  • Newly synthesized 15-Crown-5 derivatives including anthracene were used as neutral carriers for ion selective electrodes to determine potassium ion by potentiometry. Among the five neutral carriers studied in this work, N-(4'-benzo-15-crown-5-ether)-anthracene-9-imine was found to be the best in terms of selectivity and stability. The optimal composition of ion selective membrane was 1.0, 33.0 and 66.0 wt% for neutral carrier, PVC and plasticizer, resperctively. Addition of KTpCIPB used as a lipophilic additive improved the Nernst slope and the selectivity of potassium ion over alkali and alkaline earth metals. Especially, the selectivity of potassium ion over ammonium ion was remarkably good ($logK^{pot}_(K^+,NH_4^+}$=-2.59). The response time was also excellent ($t_{100}$=5sec) and continuous use of this electrode for three weeks has not changed the selectivity and analytical characteristics.

  • PDF

Selective Separation of Amino Acid Mixture Using H2O-CH2Cl2-H2O Liquid Membrane containing p-Dimethylaminobenzaldehyde, 1-Napthol and Sulfosalicylic acid as a Carrier (II) (p-Dimethylaminobenzaldehyde, 1-Naphtol, Sulfosalicylic acid 등의 Carrier를 함유하는 H2O-CH2Cl2-H2O Liquid Membrane을 이용한 아미노산의 선택적 분리(II))

  • Park, Chung Oh;Hong, Jae Jin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • A bulk liquid membrane system was introduced for selective separation of an amino acid mixture. We confirmed p-diamethylaminobenzaldehyde (DAB), sulfosalicylic acid (SSA) and 1-naphtol were very useful carriers for selective separation of an amino acid mixture. As a result, Ala, Leu, Val, Phe and Ile were successfully separated by SSA, 1-naphtol in basic condition, 1-naphtol in weak acidic condition, DAB in strong acidic condition and DAB in strong basic condition. The separation mechanism was proposed by ion pair mechanism in the case of SSA and 1-naphtol and Imine bond formation mechanism was also introduced for DAB.

  • PDF

Enantioselective Hydrosilylation of Imines Catalyzed by Diamine-Zinc Complexes

  • Park, Bu-Mahn;Feng, Xinhui;Yun, Jae-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2960-2964
    • /
    • 2011
  • The efficient asymmetric hydrosilylation of imines in the presence of polymethylhydrosiloxane has been investigated by screening chiral diamine-zinc complexes. A series of chiral diamine ligands were prepared from optically pure 1,2-diphenyl-1,2-ethanediamine and screened for effectiveness. N-Benzylic substituents were required for high enantioselectivity; ligands with bulky groups or extra coordinating groups such as OH and S lowered the catalytic activity. The level of asymmetric induction was usually in >90% ee range for aromatic imine substrates. A linear correlation between the ee of the ligand and that of the product was observed, indicating the presence of a 1:1 ratio of ligand to metal coordination in the active catalytic complex.

Effect of Cross-Linking Agents on L-Sorbose Production by Immobilized Gluconobacter suboxydans Cells

  • PARK, YOUNG-MIN;SANG-KI RHEE;EUI-SUNG CHOI;IN SIK CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.696-699
    • /
    • 1998
  • Biological oxidation of D-sorbitol to L-sorbose using permeated and immobilized cells of Gluconobacter suboxydans was carried out to investigate the optimum reaction condition. The stabilization effect of cross-linking agents such as glutaraldehyde, tannic acid, and polyethylene imine to prevent the leakage of enzymes from beads containing permeated and immobilized cells of G. suboxydans was examined by the production of L-sorbose from the mixture of D-sorbitol and gluconic acid. The protein concentration effused from immobilized beads treated with only glutaraldehyde was $5.2\mug/m\ell$ after 20 h. The beads of G. suboxydans immobilized with alginate and cross-linked with 0.3% glutaraldehyde was the most useful for the oxidation of D-sorbitol to L-sorbose.

  • PDF

Characterization of DNA/Poly(ethylene imine) Electrolyte Membranes

  • Park, Jin-Kyoung;Won, Jong-Ok;Kim, Chan-Kyung
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.581-586
    • /
    • 2007
  • Cast DNA/polyethyleneimine (PEI) blend membranes containing different amounts of DNA were prepared using acid-base interaction and characterized with the aim of understanding the polymer electrolyte membrane properties. Two different molecular weights of PEI were used to provide the mechanical strength, while DNA, a polyelectrolyte, was used for the proton transport channel. Proton conductivity was observed for the DNA/PEI membrane and reached approximately $3.0{\times}10^{-3}S/cm$ for a DNA loading of 16 wt% at $80^{\circ}C$. The proton transport phenomena of the DNA/PEI complexes were investigated in terms of the complexation energy using the density functional theory method. In the case of DNA/PEI, a cisoid-type complex was more favorable for both the formation of the complex and the dissociation of hydrogen from the phosphate. Since the main requirement for proton transport in the polymer matrix is to dissociate the hydrogen from its ionic sites, this suggests the significant role played by the basicity of the matrix.

Electrochemical Immunosensor Using the Modification of an Amine-functionalized Indium Tin Oxide Electrode with Carboxylated Single-walled Carbon Nanotubes

  • Aziz, Md.Abdul;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1171-1174
    • /
    • 2007
  • We have developed an electrochemical immunosensor that combines the electrocatalytic property of carbon nanotube and the low background current of indium tin oxide (ITO) electrode. A partial monolayer of carboxylated single-walled carbon nanotube (CCNT) is covalently formed on an ITO electrode modified with amine-terminated phosphonic acid. Nonspecifically adsorbed avidin on the hydrophobic sidewalls of CCNT is used to immobilize biotinylated antibody and to reduce the nonspecific binding to CCNT. The biotinylated antimouse IgG bound on avidin and the antimouse IgG conjugated with alkaline phosphatase (ALP) sandwiches a target mouse IgG. ALP catalyzes the conversion of p-aminophenyl phosphate monohydrate into p-aminophenol, which is electrocatalytically oxidized to p-quinone imine on CCNT surface. Moderate electrocatalytic electrode obtained with the combination of CCNT and ITO allows low detection limit (0.1 ng/ mL).

Preparation of Fully Substituted 1,3,4-Oxadiazole Derivatives from N-Isocyaniminotriphenylphosphorane, (E)-Cinnamic Acids, Chloroacetone and Primary Amines

  • Ramazani, Ali;Nasrabadi, Fatemeh Zeinali;Karimi, Zahra;Rouhani, Morteza
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2700-2704
    • /
    • 2011
  • The 1:1 imine intermediate generated by the addition of primary amine to chloroacetone is trapped by N-isocyaniminotriphenylphosphorane in the presence of (E)-cinnamic acids and the corresponding iminophosphorane intermediate was formed. Disubstituted 1,3,4-oxadiazole derivatives are formed via intramolecular aza-Wittig reaction of the iminophosphorane intermediate. The reactions were completed in neutral conditions at room temperature. The disubstituted 1,3,4-oxadiazole derivatives were produced in excellent yields.

Synthesis, Spectral Characterization, Electron Microscopic Study and Influence on the Thermal Stability of Phosphorus-containing Dendrimer with a 4,4'-Sulphonyldiphenol at the Core

  • Dadapeer, Echchukattula;Rasheed, Syed;Raju, Chamarthi Naga
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.498-502
    • /
    • 2011
  • The divergent synthesis of novel phosphorus-containing dendrimer with 4,4'-sulphonyldiphenol at the core has been accomplished involving simple condensation reactions using $P(O)Cl_3$, $P(S)Cl_3$, 3-amino-phenol, 3-hydroxy-benzaldehyde, and 2-butyn 1, 4-diol. The final compound was a Schiff's base macromolecule possessing 4 imine bonds, 8 acetylenic bonds and 8 OH groups at the periphery. The structures of intermediate compounds were confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), LC-Mass and C, H, N analysis. The structure of the final dendrimer (5) was confirmed by IR, NMR ($^1H$, $^{13}C$ and $^{31}P$), MALDI-TOF-MS, and C, H, N analysis. The surface morphological characteristics of the final dendrimer were understood by Scanning Electronic Microscopic study (SEM). The thermal stability of the final dendrimer was studied by TGA/DTA analysis.