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Scheme 1. Selective 1,3-butadien-2-ylation to imines

Table 1. Optimization of 1,3-butadien-2-ylation to imines with indium
and 2

Ph

PhHN

Ph N Br+Ph In

1d 2 3d

Br rt

Entry Solvent Additivea In
(equiv)

2
(equiv)

Time
(h)

Yield 
(%)b

1 THF 3.0 1.5 20 0
2 DMF 3.0 1.5 20 0
3 Dioxane 3.0 1.5 20 0
4 H2O 3.0 1.5 3 17(42)
5 H2O-THFc 3.0 1.5 3 15(38)
6 MeOH 3.0 1.5 3 32(30)
7 MeOH MS-4 Å 3.0 1.5 2 37(25)
8 MeOH MgSO4 3.0 1.5 2 47(19)
9 EtOH MgSO4 3.0 1.5 2 70(21)
10 EtOH MgSO4 2.0 1.0 5 54(21)
11 EtOH MgSO4 1.3 1.0 5 42(19)
12 EtOH MgSO4 2.0 1.5 2 86(5)
13 EtOH MgSO4 2.7 2.0 2 73(18)
14 EtOH MgSO4-InCl3

d 2.0 1.5 2 50(38)
15 EtOH MgSO4-AcOHe 2.0 1.5 1 55(15)

a1 equiv of MgSO4 was used. bNumbers in parentheses indicate yield of 4d.
cH2O:THF = 3:1. d20 mol % of InCl3 was used. e6 equiv of AcOH was used.

Nucleophilic addition reactions of carbon nucleophiles to 
imines is essential for synthesizing biologically active hetero-
cyclic compounds.1 While addition reactions of various carbon 
nucleophiles to carbonyl compounds have been reported, con-
siderably less successful results were obtained in the analogous 
addition reactions with imines due to relatively low reactivity 
of unactivated imines towards nucleophilic addition and de-
protonation of imines. During the last decades, various carbon 
nucleophiles have been used in addition reactions of imines.2 
However, the preparation of 2-aminomethy-1,3-dienes via addi-
tion reaction of 1,3-butadien-2-yl moiety to imines is still rare. 
Of these, Grignard cross-coupling reaction of 2-bromo-3-amino-
propene with vinyl bromides suffers from poor chemoselec-
tivity.3 2-Halomethyl-1,3-diene though quite effective in react-
ing with 2-amines to give 2-aminomethyl-1,3-dienes are not 
convenient to prepare.4 Allene reacts with various amines in 
the presence of Pd catalysts to give the derivatives of 2-amino-
methyl-1,3-diene.5 Ethylene-alkyne cross metathesis afforded 
2-aminomethyl 1,3-dienes.6 Because so much is now reported 
about Diels-Alder reaction,7 we were convinced that when we 
found a synthetic route to efficient addition reaction of 1,3- 
butadien-2-yl group to imines, then this reaction would prove 
useful for the synthesis of 2-aminomethyl-1,3-dienes as well as 
six-membered carbocycles. Recently, reactions by using organo-
indiums have been described due to their reactivity, selectivity, 
ease of preparation and handling, operational simplicity, and 
low toxicity.8 On the basis of these properties of organoindiums, 
we reported Pd-catalyzed cross-couplings, carbonylative cross- 
couplings, and addition reactions to carbonyl compounds and 
α,β-enones with allylindiums,9 allenylindiums,10 tri(organo)-
indiums,11 tetra(organo)indates,12 and indium tetra(organothio-
lates).13 During the course of this study,14 we considered the 
synthetic possibility of 2-aminomethyl-1,3-dienes via addition 

reaction of 1,3-butadien-2-yl moiety15 to imines by using in situ 
generated organoindium. Herein, we report addition reactions 
of 1,3-dien-2-yl indium in situ generated from 1,4-dibromo-2- 
butyne and indium with imines or the mixture of aldehyde and 
amine for the synthesis of 2-aminomethyl-1,3-dienes and their 
application to Diels-Alder reactions for the synthesis of six- 
membered carbocycles in one-pot process (Scheme 1).

Addition reactions of organoindiums in situ generated from 
indium and 1,4-dibromo-2-butyne (2)16 with imine (1d) were 
initially examined (Table 1). The reaction of 1d with 3 equiv of 
indium and 1.5 equiv of 2 in THF, DMF, and dioxane did not 
proceed (entries 1-3). The use of H2O gave the desired product 
3d in 17% yield and 4d in 42% yield (entry 4). Although the 
model reaction produced 1,3-diene 3d in 32% yield in MeOH, 
formation of alcohol 4d (30%) could be unavoidable (entry 6). 
Therefore, we added the drying agents such as molecular sieve 
4 Å and MgSO4 to suppress the hydrolysis of imine 1d to benz-
aldehyde (entries 7 and 8). In the case of MgSO4, the yield 
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Table 2. Selective 1,3-butadien-2-ylation to iminesa

NR1 R2
BrBr

EtOH
R1

R2HN

MgSO4
In

2

+

3

+

1

Entry Imine R1 R2 Time
(h) Product Yield 

(%)

1 1a i-Pr Ph 4 3a 61(5)b

2 1b C6H11 Ph 7 3b 60(4)c

3 1c PhCH=CH Ph 5 3c 51
4 1d Ph Ph 2 3d 86(5)c

5 1e 4-Cl-C6H4 Ph 2 3e 75(8)b

6 1f 3-Br-C6H4 Ph 3 3f 60(9)c

 7d 1g 2-I-C6H4 Ph 5 3g 61(19)c

8 1h 4-Me-C6H4 Ph 2 3h 72(7)b

9 1i 2-Me-C6H4 Ph 4 3i 67(4)b

10e 1j 3-HO-C6H4 Ph 2 3j 75(5)b

11 1k 4-MeO2C-C6H4 Ph 1 3k 65(13)b

12 1l 2-Furyl Ph 2 3l 67(4)c

13 1m Ph 4-I-C6H4 1 3m 74(14)c

14 1n Ph 4-MeO-C6H4 4 3n 76(11)c

15 1o Ph Bn 6 3o 62(17)c

 16e 1p EtO2C BnO 6 3p 77(8)c

 17e 1q EtO2C 4-MeO-C6H4 6 3q 65(9)c

aReactions were carried out with 1 equiv of 1, 1.5 equiv of 2, 2 equiv of 
indium in the presence of 1 equiv of MgSO4 at rt. b5 Derivatives. c4 Deri-
vatives. dIndium:2 = 3:2.3. e3 equiv of indium was used.

Table 3. 1,3-Butadien-2-ylation using aldehydes, amines, and organoindiums in one-pota

Br Br In
EtOH R1

R2HN

R1CHO R2NH2+ + +

32

additive

Entry R1 R2 Additive Time (h) Product Yield (%)g

1 Ph  Phb MgSO4 3 3d 50(18)
2 Ph  Phb MgSO4-InCl3

c 3 3d 60(12)
3 Ph  Phb MgSO4

d 3 3d 40(23)
4 Ph  Phb MS-4 Å 3 3d 54(18)
5 Ph Ph AcOH 2 3d 64(8)
6 Ph Ph  AcOHe 2 3d 49(20)
7 Ph Ph  AcOHf 2 3d 63(9)
8 C6H11 Ph AcOH 6 3b 48(23)
9 Ph 4-MeO-C6H4 AcOH 6 3n 56(19)

10 4-Cl-C6H4 Ph AcOH 5 3e 65(10)
11 3-HO-C6H4 Ph AcOH 5 3j 59(12)
12 4-MeO2C-C6H4 Ph AcOH 1 3k 58(18)

aReactions were carried out with 1 equiv of aldehydes, 1.5 equiv of amines, 1.5 equiv of 2, and 2 equiv of indium in the presence of 1 equiv of MgSO4 or 
1 equiv of AcOH at rt. b1 equiv of amine was used. c20 mol % InCl3 were used. d3 equiv of MgSO4 were used. e0.5 equiv of AcOH were used. f2 equiv of 
AcOH were used. gNumbers in parentheses indicate yields of 4.

(47%) of 3d was increased by 15% and formation of alcohol 
4d was suppressed to 19% (entry 8). EtOH was the best solvent 
among several reaction media examined (THF, DMF, dioxane, 
H2O, H2O-THF, MeOH, and EtOH) (entries 1-9). The present 
reaction was carried out with 1 equiv of MgSO4 in EtOH, afford-
ing the desired product 3d and 5 in 70% and 21% yields, res-

pectively (entry 9). Stoichiometry of organoindium in situ gene-
rated from indium and 2 was investigated (entries 10-13). Of 
the addition reactions examined, the best results were obtained 
with 2 equiv of indium and 1.5 equiv of 2 in the presence of 1 
equiv of MgSO4 at 25 oC for 2 h in EtOH under a nitrogen atmo-
sphere, producing selectively 3d in 86% yield (entry 12). The 
use of indium in less than 2 equiv and 2 in less than 1.5 equiv 
resulted in a sluggish reaction and provided lower yields as 
well as longer reaction times (entries 10 and 11). The use of 
MgSO4-InCl3 and MgSO4-AcOH as an additive produced the 
desired product 3d in 50% and 55% yields together with 4d in 
38% and 15% yields, respectively (entries 14 and 15).

There are no 1,6-diamino-3-hexyne (6) and 1,6-dihydroxy- 
3-hexyne (7) via 2-butyn-1,4-diylation to imine and aldehyde, 
respectively, and allenylmethyl amine (5d) via 1,2-butadien- 
3-ylation. The 1H and 13C NMR spectra of 3d are consistent 
with benzylphenylamine possessing the 1,3-dien-2-yl group. 
The four sp2 resonances (100 MHz) of the 1,3-dien-2-yl group 
appeared at 145.4, 136.6, 117.8, and 115.1 ppm, indicating that 
compound 3d was selectively produced.

R1

Y R1

YR1

Y

R1= Ph, Y= OH (7)

R1

Y

R1= Ph, Y= NHPh (3d)

R1= Ph, Y= OH (4d)

R1= Ph, Y= NHPh (5d) R1= Ph, Y= NHPh (6)

To demonstrate the scope and limitation of the present me-
thod, we applied this reaction system to various imine com-
pounds, producing 2-aminomethyl-1,3-dienes (Table 2). Under 
the optimized conditions, imine 1a afforded the 1,3-diene 3a 
and allenylmethylamine 5a in 61% and 5% yields, respectively 
(entry 1). Treatment of 1b with indium and 2 in the presence of 
MgSO4 produced the desired product (3b) in 60% yield (entry 2). 
In the case of imine-derived trans-cinnamaldehyde, 1,3-diene 
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Scheme 2. Diels-Alder reactions of 2-aminomethyl-1,3-dienes with 
dienophiles

Table 4. Diels-Alder reactions of 2-aminomethyl-1,3-dienes with 
dienophilesa

Entry Reactant Temp 
(oC)

Time 
(h) Product Yield (%)b

1 3d/8a 25 3 Ph

PhHN
CN

CN
CN

CN

9a 85

2 3d/8b 100 2 Ph

PhHN
CO2Me

CO2Me

9b 95(1:1.4)

3 3d/8f 100 2
Ph

PhHN

COCH3

Ph

PhHN
COCH3

  9c 72(1:1.8)            9d 10(1:1)

4 3d/8g 100 5
Ph

PhHN

CO2Me

Ph

PhHN
CO2Me

  9e 63(1:1.5)            9f 18(1:1)

5 3e/8c 25 5

PhHN

N

O

O

Ph
Cl

9g 89(1:1.5)

6 3h/8d 100 2
PhHN

CO2Me

CO2Me

9h 80

7 3j/8e 25 10

PhHN

OH

N

O

O

Me 9i 82(1:1.6)

8 3q/8a 25 2

BnONH

EtO2C
CN

CN

CN
CN

9j 76

9 3q/8d 80 3
BnONH

EtO2C
CO2Me

CO2Me

9k 62

10 3q/8e 25 5

BnONH

EtO2C
N Me

O

O

9l 83(1:1.1)

a1 equiv of 3 and 2 equiv of dienophiles were used. bRatios in parentheses 
indicate diastereomeric ratio.

3c was obtained in 51% yield (entry 3). The presence of either 
an electron-donating or electron-withdrawing group, such as 
chloride, bromide, iodide, methyl, hydroxyl, and methoxycar-
bonyl groups, on the aromatic ring had little affect the efficiency 
and selectivity of indium-mediated 1,3-butadien-2-ylation of 
imine (entries 5-11). Treatment of imine 1e and 1f with organo-
indium in the presence of MgSO4 gave rise to the 1,3-dienes 
(3e and 3f) in 75% and 60% yields, respectively (entries 5 and 6). 
Imine 1g reacted with 3 equiv of indium and 2.3 equiv of 2 to 
afford 1,3-diene 3g in 61% yield (entry 7). 1,3-Butadien-2-yl 
indium smoothly added to imines 1h and 1i to provide 1,3-dienes 
3h and 3i in 72 and 67% yields, respectively (entries 8 and 9). 
It is noteworthy that protection of a hydroxyl group on sub-
strates is not necessary as demonstrated by the reaction of imine 
1j (entry 10). Imine 1k bearing a 4-methoxycarbonyl group 
turned out to be compatible with the present reaction conditions 
(entry 11). 2-Furfural worked equally well with the employed 
reaction conditions, producing the 1,3-diene 3l in 67% yield 
(entry 12). Altering the electron demand of the substituents on 
aryl rings of anilines produced the 2-aminomethyl-1,3-dienes 
in good yields together with 1,3-butadien-2-yl methanols in 
about 10% yields (entries 13-15). Subjecting imines 1m and 
1n to the organoindium resulted in 3m and 3n in 74% and 76% 
yields, respectively (entries 13 and 14). Reaction of glyoxylic 
oxime ether 1p and glyoxylic imine 1q with 3 equiv of indium 
and 1.5 equiv of 2 provided N-protected α-amino esters 3p and 
3q having the 1,3-diene group in 77% and 65% yields, respec-
tively (entries 16 and 17).

Next, three component reactions of aldehydes, amines, and 
organoindiums were investigated in one-pot process (Table 3). 
The three components reaction of benzaldehyde, aniline, and 
organoindium in situ generated from 2 equiv of indium and 
1.5 equiv of 2 in the presence of 1 equiv of MgSO4 has been 
carried out at 25 oC for 3 h in EtOH under a nitrogen atmosphere, 
affording selectively the desired product 3d (50%) together 
with 4d (18%) (entry 1). A variety of additives such as MgSO4, 
MgSO4-InCl3, 4 Å molecular sieve, and AcOH were examined 
to increase the product yield as well as suppress 4d. Of the addi-
tives examined, 1 equiv of AcOH gave the best result (entry 5). 

Under the optimum conditions, the desired product 3d was pro-
duced in 64% yield. Treatment of cyclohexanecarbaldehyde 
and aniline with indium and 2 afforded 3b in 48% yield in 
one-pot process (entry 8). In situ generated imine 1n was readily 
1,3-butadien-2-ylated with organoindium to provide 3n in 56% 
yield (entry 9). We were pleased to obtain 3e and 3j in 65% 
and 59% yields, respectively, from three component reactions 
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in one-pot process (entries 10 and 11). In the case of methyl 4- 
formylbenzoate, the desired product 3k was produced in 58% 
yield together with 4k in 18% yield (entry 12). Although treat-
ment of indium and 2 with a mixture of aldehydes and amines 
gave an inferior result in terms of the chemical yields, the pre-
sent method efficiently assembled three components in one-pot 
process, producing the 2-aminomethyl-1,3-dienes in good yield.

Encouraged by these results, we were convinced that reaction 
of a variety of 2-aminomethyl-1,3-dienes 3 with dienophiles 8 
would prove useful for the synthesis of six-membered carbo-
cycles (Scheme 2). The results are summarized in Table 4. First, 
1,3-diene 3d was treated with 2 equiv of tetra(cyano)ethylene 
(8a) and dimethyl fumarate (8b) to afford 9a and 9b in 85% 
and 95% (dr = 1:1.4) yields, respectively (entries 1 and 2). The 
use of methyl vinyl ketone (8f) provided the adduct 9c (dr = 
1:1.8) and 9d (dr = 1:1) in 72% and 10% yields, respectively, 
at 100 oC for 2 h (entry 3). Also, reaction worked equally well 
with 1,3-diene 3e and N-phenylmaleimide (8c), producing 9g 
in 89% (dr = 1:1.5) yield (entry 5). We were pleased to obtain 
9h and 9i in 80% and 82% yields, respectively, from the re-
action of 3h and 3j with 8d and 8e (entries 6 and 7). Next, sub-
jecting 1,3-diene 3q having amino ester group to 2 equiv of 8a, 
8d, and 8e produced adduct 9j (76%), 9k (62%), and 9l (83%), 
respectively (entries 8-10).

In summary, we have developed a efficient method for the 
synthesis of a variety of 2-aminomethyl 1,3-dienes through the 
reactions of imines with organoindium in situ generated from 
indium and 1,3-dibromo-2-butyne. Three component reactions 
of aldehydes, amines, and organoindium gave the successful 
results in one-pot process. In addition, Diels-Alder reactions 
of 1,3-dienes possessing aminemethyl group with dienophiles 
provided valuable adducts including α-amino esters having 
6-membered carbocycles at α-position.
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