• Title/Summary/Keyword: Imaging studies

Search Result 1,610, Processing Time 0.027 seconds

Diagnostic Accuracy of Magnetic Resonance Imaging Features and Tumor-to-Nipple Distance for the Nipple-Areolar Complex Involvement of Breast Cancer: A Systematic Review and Meta-Analysis

  • Jung Hee Byon;Seungyong Hwang;Hyemi Choi;Eun Jung Choi
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.739-751
    • /
    • 2023
  • Objective: This systematic review and meta-analysis evaluated the accuracy of preoperative breast magnetic resonance imaging (MRI) features and tumor-to-nipple distance (TND) for diagnosing occult nipple-areolar complex (NAC) involvement in breast cancer. Materials and Methods: The MEDLINE, Embase, and Cochrane databases were searched for articles published until March 20, 2022, excluding studies of patients with clinically evident NAC involvement or those treated with neoadjuvant chemotherapy. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Two reviewers independently evaluated studies that reported the diagnostic performance of MRI imaging features such as continuity to the NAC, unilateral NAC enhancement, non-mass enhancement (NME) type, mass size (> 20 mm), and TND. Summary estimates of the sensitivity and specificity curves and the summary receiver operating characteristic (SROC) curve of the MRI features for NAC involvement were calculated using random-effects models. We also calculated the TND cutoffs required to achieve predetermined specificity values. Results: Fifteen studies (n = 4002 breast lesions) were analyzed. The pooled sensitivity and specificity (with 95% confidence intervals) for NAC involvement diagnosis were 71% (58-81) and 94% (91-96), respectively, for continuity to the NAC; 58% (45-70) and 97% (95-99), respectively, for unilateral NAC enhancement; 55% (46-64) and 83% (75-88), respectively, for NME type; and 88% (68-96) and 58% (40-75), respectively, for mass size (> 20 mm). TND had an area under the SROC curve of 0.799 for NAC involvement. A TND of 11.5 mm achieved a predetermined specificity of 85% with a sensitivity of 64%, and a TND of 12.3 mm yielded a predetermined specificity of 83% with a sensitivity of 65%. Conclusion: Continuity to the NAC and unilateral NAC enhancement may help predict occult NAC involvement in breast cancer. To achieve the desired diagnostic performance with TND, a suitable cutoff value should be considered.

Imaging Technique Based on Continuous Terahertz Waves for Nondestructive Inspection (비파괴검사를 위한 연속형 테라헤르츠 파 기반의 영상화 기술)

  • Oh, Gyung-Hwan;Kim, Hak-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.328-334
    • /
    • 2018
  • The paper reviews an improved continuous-wave (CW) terahertz (THz) imaging system developed for nondestructive inspection, such as CW-THz quasi-time-domain spectroscopy (QTDS) and interferometry. First, a comparison between CW and pulsed THz imaging systems is reported. The CW-THz imaging system is a simple, fast, compact, and relatively low-cost system. However, it only provides intensity data, without depth and frequency- or time-domain information. The pulsed THz imaging system yields a broader range of information, but it is expensive because of the femtosecond laser. Recently, to overcome the drawbacks of CW-THz imaging systems, many studies have been conducted, including a study on the QTDS system. In this system, an optical delay line is added to the optical arm leading to the detector. Another system studied is a CW-THz interferometric imaging system, which combines the CW-THz imaging system and far-infrared interferometer system. These systems commonly obtain depth information despite the CW-THz system. Reportedly, these systems can be successfully applied to fields where pulsed THz is used. Lastly, the applicability of these systems for nondestructive inspection was confirmed.

Rotating-Gantry-Based X-Ray Micro-Tomography System with the Sliding Mechanism Capable of Zoom-In Imaging

  • Cho, Min-Hyoung;Lee, Dong-Hun;Han, Byung-Hee;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • We introduce a rotating-gantry-based x-ray micro-tomography system to be used for small animal imaging studies. It has the zoom-in imaging capability for high resolution imaging of a local region inside the animal subject without any contrast anomalies arising from truncation of the projection data. With the sliding mechanism mounted on the rotating gantry holding the x-ray source and the x-ray detector, we can control the magnification ratio of the x-ray projection data. By combining the projection data from the large field of view (FOV) scan of the whole animal subject and the projection data from the small FOV scan of the region of interest, we can obtain artifact-free zoomed-in images of the region of interest. For the acquisition of x-ray projection data, we use a $1248{\times}1248$ flat-panel x-ray detector with the pixel pitch of 100 mm. It has been experimentally found that the developed system has the spatial resolution of up to 121p/mm when the highest magnification ratio of 5:1 is applied to the zoom-in imaging. We present some in vivo rat femur images to demonstrate utility of the developed system for small animal imaging.

Introduction To Basic Molecular Biologic Techniques for Molecular Imaging Researches (분자영상연구를 위한 분자생물학 기법 소개)

  • Kang, Joo-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.115-120
    • /
    • 2004
  • Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These precesses include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as canter, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. in order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper.

Dynamic Contrast-Enhanced MR Imaging of Tietze's Syndrome: a Case Report

  • Kim, Dong Chan;Kim, Sang Yoon;Kim, Bong Man
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • Tietze's syndrome is an inflammatory condition associated with painful swelling of the costochondral, costosternal, and sternoclavicular joints. Tietze's syndrome has been mostly attributed to microtrauma until now; however, this etiology is currently disputed. The diagnosis is based on clinical findings, although a few studies suggest the advantages of imaging. We report a case of Tietze's syndrome with a review of radiological findings, especially magnetic resonance imaging (MRI) with dynamic contrast enhancement.

Numerical Study on the Sub-Voxel Tracking Using Micro-Beads in a 3.0 T MRI (3.0 T MRI 환경에서 마이크로비드를 이용한 서브복셀 추적에 관한 수치해석적 연구)

  • Han, Byung-Hee;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.102-107
    • /
    • 2007
  • In molecular imaging studies via magnetic resonance imaging, in vivo cell tracking is an important issue for the observation of cell therapy or disease behavior. High resolution imaging and longitudinal study are necessary to track the cell movement. Since the field inhomogeneity extends over several voxels, we have performed the numerical analysis using the sub-voxel method dividing a voxel of MR image into several elements and the information about the field inhomogeneity distribution around the micro-beads. We imbedded ferrite-composite micro-beads with the size of $20-150{\mu}m$ in the subject substituted for cells to induce local field distortion. In the phantom imaging with the isotropic voxel size of $200{\mu}m^3$, we could confirm the feasibility of sub-voxel tracking in a 3.0 T MRI.

Bone scintigraphy in patients with pain

  • Shin, Seung Hyeon;Kim, Seong Jang
    • The Korean Journal of Pain
    • /
    • v.30 no.3
    • /
    • pp.165-175
    • /
    • 2017
  • Nuclear medicine imaging is widely used in pain medicine. Low back pain is commonly encountered by physicians, with its prevalence from 49% to 70%. Computed tomography (CT) or magnetic resonance imaging (MRI) are usually used to evaluate the cause of low back pain, however, these findings from these scans could also be observed in asymptomatic patients. Bone scintigraphy has an additional value in patients with low back pain. Complex regional pain syndrome (CRPS) is defined as a painful disorder of the extremities, which is characterized by sensory, autonomic, vasomotor, and trophic disturbances. To assist the diagnosis of CRPS, three-phase bone scintigraphy is thought to be superior compared to other modalities, and could be used to rule out CRPS due to its high specificity. Studies regarding the effect of bone scintigraphy in patients with extremity pain have not been widely conducted. Ultrasound, CT and MRI are widely used imaging modalities for evaluating extremity pain. However, SPECT/CT has an additional role in assessing pain in the extremities.

Molecular imaging of atherosclerosis using reporter gene system

  • Yoo, Ran Ji;Lee, Kyochul;Kang, Joo Hyun;Lee, Yong Jin
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.26-31
    • /
    • 2018
  • Macrophages play a key role in atherosclerotic plaque formation, but their participation has been discerned largely via ex vivo analyses of atherosclerotic lesions. Therefore, we aimed to identify atherosclerosis on noninvasive in vivo imaging using reporter gene system. This study demonstrated that recruitment of macrophages could be detected in atherosclerotic plaques of Apolipoprotein E knockout (ApoE-/-) mice with a sodium iodide symporter (NIS) gene imaging system using $^{99m}Tc-SPECT$. This novel approach to tracking macrophages to atherosclerotic plaques in vivo could have applications in studies of arteriosclerotic vascular disease.

The Analysis of Temperature Distribution Electric incoming Apparatus Using a Infrared Thermal Imaging System (적외선 열화상 카메라를 이용한 수전설비 온도분포해석)

  • Jeong, Seung-Cheon;Lim, Yeung-Bae;Kim, Jong-Seo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1113-1116
    • /
    • 2004
  • This paper presents the method for analyzing surface temperature of Electric incoming Apparatus. For the experiment, the surface temperature of electric power apparatus was measured and analyzed by using a infrared thermal imaging system. Surface Discharges(SD) have very complex characteristics of discharge patterns, therefore it requires the development of precise analysis methods. recently, studies on infrared thermal imaging system are carried out to analyze temperature distribution of power equipments through condition diagnosis and to diagnose the degradation of power equipments. The changes in suface temperature was measured by using the infrared thermal imaging system under hot line condition. The system was set up based on the diagnostic method of the electric incoming apparatus.

  • PDF