DOI QR코드

DOI QR Code

Diagnostic Accuracy of Magnetic Resonance Imaging Features and Tumor-to-Nipple Distance for the Nipple-Areolar Complex Involvement of Breast Cancer: A Systematic Review and Meta-Analysis

  • Jung Hee Byon (Department of Radiology, Ulsan University Hospital, University of Ulsan College of Medicine) ;
  • Seungyong Hwang (Department of Genetics, Stanford University) ;
  • Hyemi Choi (Department of Statistics and Institute of Applied Statistics, Jeonbuk National University) ;
  • Eun Jung Choi (Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School)
  • Received : 2022.11.02
  • Accepted : 2023.05.19
  • Published : 2023.08.01

Abstract

Objective: This systematic review and meta-analysis evaluated the accuracy of preoperative breast magnetic resonance imaging (MRI) features and tumor-to-nipple distance (TND) for diagnosing occult nipple-areolar complex (NAC) involvement in breast cancer. Materials and Methods: The MEDLINE, Embase, and Cochrane databases were searched for articles published until March 20, 2022, excluding studies of patients with clinically evident NAC involvement or those treated with neoadjuvant chemotherapy. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Two reviewers independently evaluated studies that reported the diagnostic performance of MRI imaging features such as continuity to the NAC, unilateral NAC enhancement, non-mass enhancement (NME) type, mass size (> 20 mm), and TND. Summary estimates of the sensitivity and specificity curves and the summary receiver operating characteristic (SROC) curve of the MRI features for NAC involvement were calculated using random-effects models. We also calculated the TND cutoffs required to achieve predetermined specificity values. Results: Fifteen studies (n = 4002 breast lesions) were analyzed. The pooled sensitivity and specificity (with 95% confidence intervals) for NAC involvement diagnosis were 71% (58-81) and 94% (91-96), respectively, for continuity to the NAC; 58% (45-70) and 97% (95-99), respectively, for unilateral NAC enhancement; 55% (46-64) and 83% (75-88), respectively, for NME type; and 88% (68-96) and 58% (40-75), respectively, for mass size (> 20 mm). TND had an area under the SROC curve of 0.799 for NAC involvement. A TND of 11.5 mm achieved a predetermined specificity of 85% with a sensitivity of 64%, and a TND of 12.3 mm yielded a predetermined specificity of 83% with a sensitivity of 65%. Conclusion: Continuity to the NAC and unilateral NAC enhancement may help predict occult NAC involvement in breast cancer. To achieve the desired diagnostic performance with TND, a suitable cutoff value should be considered.

Keywords

Acknowledgement

This paper was supported by Fund of Biomedical Research Institute, Jeonbuk National University Hospital.

References

  1. Smith BL, Tang R, Rai U, Plichta JK, Colwell AS, Gadd MA, et al. Oncologic safety of nipple-sparing mastectomy in women with breast cancer. J Am Coll Surg 2017;225:361-365 https://doi.org/10.1016/j.jamcollsurg.2017.06.013
  2. Petit JY, Veronesi U, Orecchia R, Curigliano G, Rey PC, Botteri E, et al. Risk factors associated with recurrence after nipple-sparing mastectomy for invasive and intraepithelial neoplasia. Ann Oncol 2012;23:2053-2058 https://doi.org/10.1093/annonc/mdr566
  3. Wu ZY, Kim HJ, Lee JW, Chung IY, Kim JS, Lee SB, et al. Breast cancer recurrence in the nipple-areola complex after nipple-sparing mastectomy with immediate breast reconstruction for invasive breast cancer. JAMA Surg 2019;154:1030-1037 https://doi.org/10.1001/jamasurg.2019.2959
  4. Chan SE, Liao CY, Wang TY, Chen ST, Chen DR, Lin YJ, et al. The diagnostic utility of preoperative breast magnetic resonance imaging (MRI) and/or intraoperative sub-nipple biopsy in nipple-sparing mastectomy. Eur J Surg Oncol 2017;43:76-84 https://doi.org/10.1016/j.ejso.2016.08.005
  5. Liao CY, Wu YT, Wu WP, Chen CJ, Wu HK, Lin YJ, et al. Role of breast magnetic resonance imaging in predicting malignant invasion of the nipple-areolar complex: potential predictors and reliability between inter-observers. Medicine (Baltimore) 2017;96:e7170
  6. Ponzone R, Maggiorotto F, Carabalona S, Rivolin A, Pisacane A, Kubatzki F, et al. MRI and intraoperative pathology to predict nipple-areola complex (NAC) involvement in patients undergoing NAC-sparing mastectomy. Eur J Cancer 2015;51:1882-1889 https://doi.org/10.1016/j.ejca.2015.07.001
  7. Gao Y, Brachtel EF, Hernandez O, Heller SL. An analysis of nipple enhancement at breast MRI with radiologic-pathologic correlation. RadioGraphics 2019;39:10-27 https://doi.org/10.1148/rg.2019180039
  8. Lee SC, Mendez-Broomberg K, Eacobacci K, Vincoff NS, Gupta E, McElligott SE. Nipple-sparing mastectomy: what the radiologist should know. Radiographics 2022;42:321-339 https://doi.org/10.1148/rg.210136
  9. Da Costa D, Taddese A, Cure ML, Gerson D, Poppiti R Jr, Esserman LE. Common and unusual diseases of the nipple-areolar complex. RadioGraphics 2007;27 Suppl 1(suppl_1):S65-S77 https://doi.org/10.1148/rg.27si075512
  10. Friedman EP, Hall-Craggs MA, Mumtaz H, Schneidau A. Breast MR and the appearance of the normal and abnormal nipple. Clin Radiol 1997;52:854-861 https://doi.org/10.1016/S0009-9260(97)80081-5
  11. Nicholson BT, Harvey JA, Cohen MA. Nipple-areolar complex: normal anatomy and benign and malignant processes. RadioGraphics 2009;29:509-523 https://doi.org/10.1148/rg.292085128
  12. Schoub PK. Understanding indications and defining guidelines for breast magnetic resonance imaging. SA J Radiol 2018;22:1353
  13. Bae SJ, Cha YJ, Eun NL, Ji JH, Kim D, Lee J, et al. Diagnostic accuracy of nonmass enhancement at breast MRI in predicting tumor involvement of the nipple: a prospective study in a single institution. Radiology 2021;301:47-56 https://doi.org/10.1148/radiol.2021204136
  14. Cho J, Chung J, Cha ES, Lee JE, Kim JH. Can preoperative 3-T MRI predict nipple-areolar complex involvement in patients with breast cancer? Clin Imaging 2016;40:119-124 https://doi.org/10.1016/j.clinimag.2015.08.002
  15. Koh J, Park AY, Ko KH, Jung HK. MRI diagnostic features for predicting nipple-areolar-complex involvement in breast cancer. Eur J Radiol 2020;122:108754
  16. Liu Z, Li X, Feng B, Li C, Chen Y, Yi L, et al. MIP image derived from abbreviated breast MRI: potential to reduce unnecessary sub-nipple biopsies during nipple-sparing mastectomy for breast cancer. Eur Radiol 2021;31:3683-3692 https://doi.org/10.1007/s00330-020-07550-w
  17. Moon JY, Chang YW, Lee EH, Seo DY. Malignant invasion of the nipple-areolar complex of the breast: usefulness of breast MRI. AJR Am J Roentgenol 2013;201:448-455 https://doi.org/10.2214/AJR.12.9186
  18. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM; the PRISMA-DTA Group. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement. JAMA 2018;319:388-396 https://doi.org/10.1001/jama.2017.19163
  19. Park SH. Guides for the successful conduct and reporting of systematic review and meta-analysis of diagnostic test accuracy studies. Korean J Radiol 2022;23:295-297 https://doi.org/10.3348/kjr.2021.0963
  20. Park HY, Suh CH, Woo S, Kim PH, Kim KW. Quality reporting of systematic review and meta-analysis according to PRISMA 2020 guidelines: results from recently published papers in the Korean Journal of Radiology. Korean J Radiol 2022;23:355-369 https://doi.org/10.3348/kjr.2021.0808
  21. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-536 https://doi.org/10.7326/0003-4819-155-8-201110180-00009
  22. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005;58:982-990 https://doi.org/10.1016/j.jclinepi.2005.02.022
  23. Noma H, Matsushima Y, Ishii R. Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Commun Stat Case Stud Data Anal Appl 2021;7:344-358 https://doi.org/10.1080/23737484.2021.1894408
  24. Steinhauser S, Schumacher M, Rucker G. Modelling multiple thresholds in meta-analysis of diagnostic test accuracy studies. BMC Med Res Methodol 2016;16:97
  25. Clark SE, Warwick J, Carpenter R, Bowen RL, Duffy SW, Jones JL. Molecular subtyping of DCIS: heterogeneity of breast cancer reflected in pre-invasive disease. Br J Cancer 2011;104:120-127 https://doi.org/10.1038/sj.bjc.6606021
  26. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 2005;58:882-893 https://doi.org/10.1016/j.jclinepi.2005.01.016
  27. Balduzzi S, Rucker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 2019;22:153-160 https://doi.org/10.1136/ebmental-2019-300117
  28. Doebler P. Mada: meta-analysis of diagnostic accuracy [accessed on March 1, 2022]. Available at: https://cran.r-project.org/web/packages/mada/index.html
  29. Bufi E, Piacentini M, Belli P, Conti M, Ciriello G, Franceschini G, et al. Is subareolar intraoperative biopsy still necessary to predict nipple involvement? Eur Rev Med Pharmacol Sci 2021;25:661-668
  30. Byon W, Kim E, Kwon J, Park YL, Park C. Magnetic resonance imaging and clinicopathological factors for the detection of occult nipple involvement in breast cancer patients. J Breast Cancer 2014;17:386-392 https://doi.org/10.4048/jbc.2014.17.4.386
  31. D'Alonzo M, Martincich L, Fenoglio A, Giannini V, Cellini L, Liberale V, et al. Nipple-sparing mastectomy: external validation of a three-dimensional automated method to predict nipple occult tumour involvement on preoperative breast MRI. Eur Radiol Exp 2019;3:31
  32. El-Adalany MA, El-Razek AAEA, El-Metwally D. Prediction of nipple-areolar complex involvement by breast cancer: role of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Egypt J Radiol Nucl Med 2021;52:131
  33. Jun S, Bae SJ, Cha YJ, Cha C, Park S, Kim D, et al. Significance of non-mass enhancement in the subareolar region on preoperative breast magnetic resonance imaging for nipple-sparing mastectomy. Clin Breast Cancer 2020;20:e458-e468 https://doi.org/10.1016/j.clbc.2020.02.005
  34. Lim S, Park G, Choi HJ, Kwon WJ, Kang BS, Bang M. Use of preoperative mammography, ultrasonography, and MRI to predict nipple areolar complex involvement in breast cancer. Br J Radiol 2019;92:20190074
  35. Machida Y, Shimauchi A, Igarashi T, Hoshi K, Fukuma E. Preoperative breast MRI: reproducibility and significance of findings relevant to nipple-areolar complex involvement. Breast Cancer 2018;25:456-463 https://doi.org/10.1007/s12282-018-0845-9
  36. Piato JR, de Andrade RD, Chala LF, de Barros N, Mano MS, Melitto AS, et al. MRI to predict nipple involvement in breast cancer patients. AJR Am J Roentgenol 2016;206:1124-1130 https://doi.org/10.2214/AJR.15.15187
  37. Mariscotti G, Durando M, Houssami N, Berzovini CM, Esposito F, Fasciano M, et al. Preoperative MRI evaluation of lesion-nipple distance in breast cancer patients: thresholds for predicting occult nipple-areola complex involvement. Clin Radiol 2018;73:735-743 https://doi.org/10.1016/j.crad.2018.03.008
  38. Kim KW, Lee J, Choi SH, Huh J, Park SH. Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part I. General guidance and tips. Korean J Radiol 2015;16:1175-1187 https://doi.org/10.3348/kjr.2015.16.6.1175
  39. Burger N, Luparia A, Leo GD, Carbonaro LA, Trimboli RM, Ambrogi F, et al. Diagnostic performance of MRI versus galactography in women with pathologic nipple discharge: a systematic review and meta-analysis. AJR Am J Roentgenol 2017;209:465-471 https://doi.org/10.2214/AJR.16.16682
  40. Filipe MD, Patuleia SIS, Vriens MR, van Diest PJ, Witkamp AJ. Meta-analysis and cost-effectiveness of ductoscopy, duct excision surgery and MRI for the diagnosis and treatment of patients with pathological nipple discharge. Breast Cancer Res Treat 2021;186:285-293 https://doi.org/10.1007/s10549-021-06094-x
  41. Zhang H, Li Y, Moran MS, Haffty BG, Yang Q. Predictive factors of nipple involvement in breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2015;151:239-249 https://doi.org/10.1007/s10549-015-3385-4
  42. Dent BL, Miller JA, Eden DJ, Swistel A, Talmor M. Tumor-to-nipple distance as a predictor of nipple involvement: expanding the inclusion criteria for nipple-sparing mastectomy. Plast Reconstr Surg 2017;140:1e-8e https://doi.org/10.1097/PRS.0000000000003414
  43. Frey JD, Salibian AA, Lee J, Harris K, Axelrod DM, Guth AA, et al. Oncologic trends, outcomes, and risk factors for locoregional recurrence: an analysis of tumor-to-nipple distance and critical factors in therapeutic nipple-sparing mastectomy. Plast Reconstr Surg 2019;143:1575-1585 https://doi.org/10.1097/PRS.0000000000005600
  44. Geissbuhler M, Hincapie CA, Aghlmandi S, Zwahlen M, Juni P, da Costa BR. Most published meta-regression analyses based on aggregate data suffer from methodological pitfalls: a meta-epidemiological study. BMC Med Res Methodol 2021;21:123
  45. Shaaban AM. Why is LCIS important-pathological review. Curr Breast Cancer Rep 2021;13:132-140 https://doi.org/10.1007/s12609-021-00415-1