• Title/Summary/Keyword: Imaging probes

Search Result 152, Processing Time 0.02 seconds

Radiolabeled Benzamide Derivatives for Development of Malignant Melanoma Imaging Agents

  • Ayoung Pyo;Boreum Song;Heejung Kim;Dong-Yeon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Malignant melanoma has an aggressive nature and high metastatic potential that result in one of the highest cancer mortality rates. Over the past three decades, primary and metastatic melanoma incidence has rapidly increased. The recent advances in diagnostic technology have shown promise, but there is still an enormous need for specific detection methods to diagnose malignant melanoma. Positron emission tomography can visualize a particular biomarker of malignant melanoma and promise a noninvasive image of micrometastases. However, the development of PET radiopharmaceuticals remains necessary for diagnosing malignant melanoma by using positron emission tomography. In this review, the history and a general overview of PET radionuclide labeled benzamide derivatives, including their radiosynthesis, in vivo characterization, and evaluation, are provided as imaging agents for malignant melanoma.

Molecular imaging of polarized macrophages in tumors

  • Ran Ji Yoo;Yun-Sang Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.41-49
    • /
    • 2021
  • Diversity and flexibility are two typical hallmarks of macrophages. Two types of macrophages, M1(classically activated macrophages) and M2(alternatively activated macrophages) exist at both ends of the commonly known macrophage polarization. M1 macrophages have inflammatory properties and are primarily responsible for defending against invading bacteria in our body. On the other hand, M2 macrophages are involved in anti-inflammatory responses and tissue remodeling. Polarized migration of macrophages is of increasing interest in regulating the initiation, generation, and resting phases of inflammatory diseases. In this review, it intend to discuss the properties and functions of tumor-associated macrophages based on polarized macrophages that affect inflammatory diseases. In addition, the purpose of this study is to investigate a molecular imaging approach that targets macrophages that affect tumor growth by controlling the polarization of macrophages that affect tumor diagnosis and treatment.

[18F]Labeled 2-nitroimidazole derivatives for hypoxia imaging

  • Seelam, Sudhakara Reddy;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.73-83
    • /
    • 2016
  • Imaging hypoxia using positron emission tomography (PET) is of great importance for cancer therapy. [$^{18}F$] Fluoromisonidazole (FMISO) was the first PET agent used for imaging tumor hypoxia. Various radiolabeled nitroimidazole derivatives such as [$^{18}F$]fluoroerythronitroimidazole (FETNIM), [$^{18}F$]1-${\alpha}$-D-(2-deoxy-2-fluoroarabinofuranosyl)-2-nitroimidazole(FAZA), 2-(2-nitroimidazol-1-yl)-N-(3,3,3-[18F]-trifluoropropyl)acetamide ([$^{18}F$]EF-3), [$^{18}F$]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), 3-[$^{18}F$]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol ([$^{18}F$]HX-4), and [$^{18}F$]fluoroetanidazole (FETA) were developed successively. However, these imaging agents still produce PET images with limited resolution; the lower blood flow in hypoxic tumors compared to normoxic tumors results in low uptake of the agents in hypoxic tumors. Thus, the development of better imaging agents is necessary.

Research status for long term half-life PET radioisotopes in KIRAMS

  • Kim, Jung Young;Park, Hyun;Chun, Kwon Soo;An, Gwang Il
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • It is essential use of long term half life radioisotopes for positron emission tomography (PET) imaging study of biopharmaceuticals because most of biopharmaceuticals have long biological half-life. Some representative isotopes are $^{124}I$, $^{64}Cu$, $^{89}Zr$ and so on. These PET radioisotopes and their radiopharmaceuticals have recently received growing interest because of long half life and good imaging properties. Furthermore, $^{64}Cu$ and $^{89}Zr$ can be used in a number of radiopharmaceuticals due to its ease of conjugation to peptides and antibodies using the proper chelator. In recent years, since $^{124}I$ was first developed in 2005, we have been studied to develop an efficient method and procedure for producing these radioisotopes, and we have made considerable progress in production of long term half life radioisotopes. This review introduces the general production system, purification procedure, and several advances on targeting method for $^{124}I$ and $^{64}Cu$ in KIRAMS.

Small-molecule probes elucidate global enzyme activity in a proteomic context

  • Lee, Jun-Seok;Yoo, Young-Hwa;Yoon, Chang No
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied.

Development of Fluorescent Small Molecules for Imaging of Alzheimer's Disease Biomarkers (알츠하이머병의 영상 진단을 위한 형광 프로브의 개발)

  • Min, Changho;Ha, Heonsu;Jeon, Jongho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Alzheimer's disease (AD), an irreversible degenerative disorder, is associated with accumulation and aggregation of amyloid-β peptides, hyperphosphorylated tau proteins, and high level of metal ions in the brain. Up to date, there is no effective therapeutic agent to stop the progress of the disease and thus early and accurate diagnosis of AD has gained increasing attention in recent years. Among several diagnostic methods, an optical imaging using fluorescent probes is one of the most promising tools to visualize AD biomarkers. In this review, we will introduce fluorescent probes that can be applied to in vivo brain imaging of AD models and also their structure. It is expected that the present review will provide useful information to many scientists in the related research fields.

Radio-Iodinated arbutin for tumor imaging

  • Huynh, Phuong Tu;Ha, Yeong Su;Lee, Woonghee;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.72-79
    • /
    • 2017
  • Arbutin is a hydroquinone derivative with a glucose moiety. As a tyrosinase inhibitor, it is widely used as a skin-whitening cosmetic agent for the treatment of cutaneous hyperpigmentary disorders, such as melasma and freckles. In the medical field, many studies have addressed the use of arbutin in various tumors, but the mechanism for tumor uptake of arbutin is still unclear. In this paper, we radiolabeled arbutin using radioiodine and studied its pharmacokinetics and tumor uptake via biodistribution experiments and single-photon emission computed tomography (SPECT) imaging. Radiolabeled $^{131}I-arbutin$ was stable for up to 24 h in PBS and serum. Biodistribution studies and SPECT imaging indicated high uptake of the compound in the bladder and kidneys shortly after injection. Twenty-four hours post-injection, significant deiodination was observed. Apart from high thyroid uptake, selective tumor uptake was clearly observed. The tumor-to-muscle and tumor-to-blood ratios were 26 and 9, respectively.

Direct radio-iodination of folic acid for targeting folate receptor-positive tumors

  • Huynh, Phuong Tu;Lee, Woonghee;Ha, Yeong Su;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • The folate receptor (FR) is a promising cell membrane-associated target for nuclear imaging of various cancers (via imaging $FR-{\alpha}$) and potentially also inflammatory diseases (via imaging $FR-{\beta}$), through the use of folic acid-based radioconjugates. However, there have been several drawbacks of previously reported radioconjugates, such as a short half-life of the radiolabel ($^{68}Ga\;t_{1/2}$ 68 min), a complex and time-consuming multistep radiosynthesis, and a high renal uptake of radiolabeled folate derivatives. The goal of this study was to develop an imaging probe by directly labeling folate with radioactive iodine without using an extra prosthetic group. The radiolabeling of folate was optimized using various labeling conditions and the labeled tracers were isolated by high-performance liquid chromatography. The in vitro stability of labeled folate was checked in phosphate-buffered saline and serum. The tumor-targeting efficacy of the probe was also evaluated by biodistribution studies using a murine 4T1 tumor model.

Comparative study of 2-nitroimidazole-fluorophore-conjugated derivatives with pimonidazole for imaging tumor hypoxia

  • Seelam, Sudhakara Reddy;Hong, Mi Kyung;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.101-112
    • /
    • 2019
  • Herein, 2-nitroimidazole-fluorophore conjugates were synthesized by linking 2-nitroimidazole and FITC or RITC via thiourea bonds. The prepared derivatives were stable for 2 h in Dulbecco's modified Eagle's medium (DMEM) at 37 ℃. The novel conjugates were studied for their in vitro uptake under hypoxic conditions using U87MG and CT-26 cell lines, showing significantly higher uptakes in hypoxic than normoxic cells. Immunohistochemical analysis confirmed hypoxia in U87MG and CT-26 xenografted tumor tissues. Moreover, the prepared conjugates were evaluated by in vivo experiments after intravenous injection in U87MG and CT-26 xenografted mice. Hypoxia was confirmed by immunohistochemistry of the prepared derivatives with co-injected pimonidazole. Confocal microscopy of the prepared derivatives showed strong fluorescence in hypoxic tumor tissues correlated with the pimonidazole distribution. This suggested that the 2-nitroimidazole-fluorophore conjugates are promising optical imaging probes for tumor hypoxia and are promising substitutes for pimonidazole immunohistochemistry, which requires a multi-step procedure of incubation involving antibody, second antibody, dye, hydrogen peroxide, and multiple washing steps.

Inorganic Nanoparticles for Near-infrared-II Fluorescence Imaging (근적외선-II 형광 이미징을 위한 무기 나노입자)

  • Park, Yong Il
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.17-27
    • /
    • 2022
  • Fluorescence imaging is widely used to image cells or small animals due to its high temporal and spatial resolution. Because conventional fluorescence imaging uses visible light, the penetration depth of light within the tissue is low, phototoxicity may occur due to visible light, and the detection sensitivity is lowered due to interference by background autofluorescence. In order to overcome this limitation, long-wavelength light should be used, and fluorescence imaging using near-infrared-I (NIR-I) in the region of 700~900 nm has been developed. To further improve imaging quality, researchers are interested in using a longer wavelength light, near-infrared-II (NIR-II) ranging from 1000 to 1700 nm. In the NIR-II region, light scattering is further minimized, and the penetration depth of light in the tissue is improved up to about 10 mm, and autofluorescence of the tissue is reduced, enabling high sensitivity and resolution fluorescence imaging. In this review, among various NIR-II fluorescence imaging probes, inorganic nanoparticle-based probes with excellent photostability and easily tunable emission wavelength were described, focusing on single-walled carbon nanotubes, quantum dots, and lanthanide nanoparticles.