DOI QR코드

DOI QR Code

Development of Fluorescent Small Molecules for Imaging of Alzheimer's Disease Biomarkers

알츠하이머병의 영상 진단을 위한 형광 프로브의 개발

  • Min, Changho (Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Ha, Heonsu (Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University) ;
  • Jeon, Jongho (Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University)
  • 민창호 (경북대학교 공과대학 응용화학공학부 응용화학과) ;
  • 하헌수 (경북대학교 공과대학 응용화학공학부 응용화학과) ;
  • 전종호 (경북대학교 공과대학 응용화학공학부 응용화학과)
  • Received : 2020.11.11
  • Accepted : 2020.11.26
  • Published : 2021.02.10

Abstract

Alzheimer's disease (AD), an irreversible degenerative disorder, is associated with accumulation and aggregation of amyloid-β peptides, hyperphosphorylated tau proteins, and high level of metal ions in the brain. Up to date, there is no effective therapeutic agent to stop the progress of the disease and thus early and accurate diagnosis of AD has gained increasing attention in recent years. Among several diagnostic methods, an optical imaging using fluorescent probes is one of the most promising tools to visualize AD biomarkers. In this review, we will introduce fluorescent probes that can be applied to in vivo brain imaging of AD models and also their structure. It is expected that the present review will provide useful information to many scientists in the related research fields.

알츠하이머병은 신경퇴행질환으로 뇌조직에서 발생하는 아밀로이드 베타(amyloid-β, Aβ) 펩타이드의 축적과 응집, 타우 단백질의 초인산화, 고농도의 특정 금속이온 축적에 의해 발병하는 것으로 알려져 있다. 현재까지 효과적인 치료제가 개발되지 못하였기 때문에, 알츠하이머병을 초기에 정확하게 진단하는 기술은 매우 중요하다. 알츠하이머병의 진단을 위해 개발된 다양한 기법 중 형광 프로브를 이용한 알츠하이머병의 바이오마커 영상화는 많은 연구자들의 관심을 받고 있다. 본 리뷰 논문에서는 최근 개발된 알츠하이머병 진단용 형광 프로브의 구조와, 체내 뇌 영상화에의 적용을 소개하고자 한다. 본 논문은 향후 새로운 프로브를 개발하고자 하는 연구자들에게 많은 도움이 될 것으로 기대된다.

Keywords

References

  1. J. Greenwald and R. Riek, Biology of amyloid: Structure, function, and regulation, Structure, 18, 1244-1260 (2018). https://doi.org/10.1016/j.str.2010.08.009
  2. P. Faller, C. Hureau, and O. Berthoumieu, Role of metal ions in the self-assembly of the Alzheimer's amyloid-beta peptide, Inorg. Chem., 52, 12193-12206 (2013). https://doi.org/10.1021/ic4003059
  3. Y.-H. Suh and F. Checler, Amyloid precursor protein, presenilins, and α-synuclein: Molecular pathogenesis and pharmacological applications in Alzheimer's disease, Pharmacol. Res., 54, 469-525 (2002).
  4. U. C. Müller, T. Deller, and M. Korte, Not just amyloid: Phy- siological functions of the amyloid precursor protein family, Nat. Rev. Neurosci., 18, 281-298 (2017). https://doi.org/10.1038/nrn.2017.29
  5. K. P. Kepp, Bioinorganic chemistry of Alzheimer's disease, Chem. Rev., 112, 5193-5239 (2012). https://doi.org/10.1021/cr300009x
  6. K. Iqbal, A. del C. Alonso, S. Chen, M. O. Chohan, E. El-Akkad, C.-X. Gong, S. Khatoon, B. Li, F. Liu, A. Rahman, H. Tanimukai, and I. Grundke-Iqbal, Tau pathology in Alzheimer disease and other tauopathies, Biochim. Biophys. Acta, Mol. Basis Dis., 1739, 198-210 (2005). https://doi.org/10.1016/j.bbadis.2004.09.008
  7. K. V. Kuchibhotla, S. Wegmann, K. J. Kopeikina, J. Hawkes, N. Rudinskiy, M. L. Andermann, T. L. Spires-Jones, B. J. Bacskai, and B. T. Hyman, Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo, Proc. Natl. Acad. Sci. U. S. A., 111, 510-514 (2014). https://doi.org/10.1073/pnas.1318807111
  8. G. Lippens, A. Sillen, I. Landrieu, L. Amniai, N. Sibille, P. Barbier, A. Leroy, X. Hanoulle, and J.-M. Wieruszeski, Tau aggregation in Alzheimer's disease, Prion, 1, 21-25 (2007). https://doi.org/10.4161/pri.1.1.4055
  9. I. Grundke-Iqbal, K. Iqbal, Y. C. Tung, M. Quinlan, H. M. Wisniewski, and L. I. Binder, Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. U. S. A., 83, 4913-4917 (1986). https://doi.org/10.1073/pnas.83.13.4913
  10. A. Lorenzo and B. A. Yankner, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red, Proc. Natl. Acad. Sci. U. S. A., 91, 12243-12247 (1994). https://doi.org/10.1073/pnas.91.25.12243
  11. W. E. Klunk, M. L. Debnath, and J. W. Pettegrew, Chrysamine-G binding to Alzheimer and control brain: Autopsy study of a new amyloid probe, Neurobiol. Aging, 16, 541-548 (1995). https://doi.org/10.1016/0197-4580(95)00058-M
  12. H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda, Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T, Anal. Biochem., 177, 244-249 (1989). https://doi.org/10.1016/0003-2697(89)90046-8
  13. W. E. Klunk, B. J. Bacskai, C. A. Mathis, S. T. Kajdasz, M. E. McLellan, M. P. Frosch, M. L. Debnath, D. P. Holt, Y. Wang, and B. T. Hyman, Imaging Aβ plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered congo red derivative, J. Neuropathol. Exp. Neurol., 61, 797-805 (2002). https://doi.org/10.1093/jnen/61.9.797
  14. M. Hintersteiner, A. Enz, P. Frey, A.-L. Jaton, W. Kinzy, R. Kneuer, U. Neumann, M. Rudin, M. Staufenbiel, M. Stoeckli, K.-H. Wiederhold, and H.-U. Gremlich, In vivo detection of amyloid-β deposits by near-infrared imaging using an oxazine-derivative probe, Nat. Biotechnol., 23, 577-583 (2005). https://doi.org/10.1038/nbt1085
  15. A. G. Vlassenko, T. L. S. Benzinger, and J. C. Morris, PET amyloid-beta imaging in preclinical Alzheimer's disease, Biochim. Biophys. Acta, Mol. Basis Dis., 1822, 370-379 (2012). https://doi.org/10.1016/j.bbadis.2011.11.005
  16. C. A. Mathis, N. S. Mason, B. J. Lopresti, and W. E. Klunk, Development of positron emission tomography β-amyloid plaque imaging agents, Semin. Nucl. Med., 42, 423-432 (2012). https://doi.org/10.1053/j.semnuclmed.2012.07.001
  17. N. A. Murugan, R. Zalesny, J. Kongsted, A. Nordberg, and H. Agren, Promising two-photon probes for in vivo detection of β amyloid deposits, Chem. Commun., 50, 11694-11697 (2014). https://doi.org/10.1039/C4CC03897E
  18. P. Verwilst, H. S. Kim, S. Kim, C. Kang, and J. S. Kim, Shedding light on tau protein aggregation: the progress in developing highly selective fluorophores, Chem. Soc. Rev., 47, 2249-2265 (2018). https://doi.org/10.1039/C7CS00706J
  19. P. Verwilst, H.-R. Kim, J. Seo J, N.-W. Sohn, S.-Y. Cha, Y. Kim, S. Maeng, J.-W. Shin, J. H. Kwak C. Kang, and J. S. Kim, Rational design of in vivo tau tangle-selective near-infrared fluorophores: expanding the bodipy universe, J. Am. Chem. Soc., 139, 13393-13403 (2017). https://doi.org/10.1021/jacs.7b05878
  20. E. E. Nesterov, J. Skoch, B. T. Hyman, W. E. Klunk, B. J. Bacskai and T. M. Swager, In vivo optical imaging of amyloid aggregates in brain: Design of fluorescent markers, Angew. Chem. Int. Ed., 44, 5452-5456 (2008). https://doi.org/10.1002/anie.200500845
  21. S. B. Raymond, J. Skoch, I. D. Hills, E. E. Nesterov, T. M. Swager, and B. J. Bacskai, Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology, Eur. J. Nucl. Med. Mol. Imaging, 35, 93-98 (2008). https://doi.org/10.1007/s00259-007-0708-7
  22. Y. Wang, T. Liu, E. Zhang, S. Luo, X. Tan, and C. Shi, Preferential accumulation of the near infrared heptamethine dye IR-780 in the mitochondria of drug-resistant lung cancer cells, Biomaterials, 35, 4116-4124 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.061
  23. G. Lv, A. Sun, P. Wei, N. Zhang, H. Lan, and T. Yi, A spiropyran-based fluorescent probe for the specific detection of b-amyloid peptide oligomersin Alzheimer's disease, Chem. Commun., 52, 8865 (2016). https://doi.org/10.1039/C6CC02741E
  24. J. W. Yan, J. Y. Zhu, K. X. Zhou, J. S. Wang, H. Y. Tan, Z. Y. Xu, S. B. Chen, Y. T. Lu, M. C. Cui, and L. Zhang, Neutral merocyanine dyes: for in vivo NIR fluorescence imaging of amyloid-β plaques, Chem. Commun., 53, 9910-9913 (2017). https://doi.org/10.1039/C7CC05056A
  25. H. L. Yang, S. Q. Fang, Y. W. Tang, C. Wang, H. Luo, L. L. Qu, J. H. Zhao, C. J. Shi, F. C. Yin, X. B. Wang, and L. Y. Kong, A hemicyanine derivative for near-infrared imaging of betaamyloid plaques in Alzheimer's disease, Eur. J. Med. Chem., 179, 736-743 (2019). https://doi.org/10.1016/j.ejmech.2019.07.005
  26. H. Y. Kim, U. Sengupta, P. Shao, M. J. Guerrero-Munoz, R. Kayed, and M. Bai, Alzheimer's disease imaging with a novel Tau targeted near infrared ratiometric probe, Am. J. Nucl. Med. Mol. Imaging, 3, 102-117 (2013).
  27. S. Aggarwal, H. Ichikawa, Y. Takada, S. K. Sandur, S. Shishodia, and B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation, Mol. Pharmacol., 69, 195-206 (2006). https://doi.org/10.1124/mol.105.017400
  28. C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova, and A. Moore, Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-beta deposits, J. Am. Chem. Soc., 131, 15257-15261 (2009). https://doi.org/10.1021/ja9047043
  29. X. Zhang, Y. Tian, Z. Li, X. Tian, H. Sun, H. Liu, A. Moore, and C. Ran, Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer's disease, J. Am. Chem. Soc., 135, 16397-16409 (2013). https://doi.org/10.1021/ja405239v
  30. X. Zhang, Y. Tian, C. Zhang, X. Tian, A. W. Ross, R. D. Moir, H. Sun, R. E. Tanzi, A. Moore, and C. Ran, Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer's disease, Proc. Natl. Acad. Sci. U. S. A., 112, 9734-9739 (2015). https://doi.org/10.1073/pnas.1505420112
  31. Y. Li, J. Yang, H. Liu, J. Yang, L. Du, H. Feng, Y. Tian, J. Cao, and C. Ran, Tuning the stereo-hindrance of a curcumin scaffold for the selective imaging of the soluble forms of amyloid beta species, Chem. Sci., 8, 7710-7717 (2017). https://doi.org/10.1039/C7SC02050C
  32. K. S. Park, Y. Seo, M. K. Kim, K. Kim, Y. K. Kim, H. Choo, and Y. A. Chong, Curcumin-based molecular probe for near-infrared fluorescence imaging of tau fibrils in Alzheimer's disease, Org. Biomol. Chem., 13, 11194-11199 (2015). https://doi.org/10.1039/C5OB01847A
  33. Y. Seo, K. S. Park, T. Ha, M. K. Kim, Y. J. Hwang, J. Lee, H. Ryu, H. Choo, and Y. Chong, A smart near-infrared fluorescence probe for selective detection of tau fibrils in Alzheimer's disease, ACS Chem. Neurosci., 7, 1474-1481 (2016). https://doi.org/10.1021/acschemneuro.6b00174
  34. K. S. Park, K. Yoo, M. K. Kim, W. Jung, Y. K. Choi, and Y. Chong, A novel probe with a chlorinated α cyanoacetophenone acceptor moiety shows near-infrared fluorescence specific for tau fibrils, Chem. Pharm. Bull., 65, 1113-1116 (2017). https://doi.org/10.1248/cpb.c17-00559
  35. K.-S. Park, M. K. Kim, Y. Seo, T. Ha, K. Yoo, S. J. Hyeon, Y. J. Hwang, J. Lee, H. Ryu, H. Choo, and Y. A. Chong, Difluoroboron β-diketonate probe shows "Turn-on" near-infrared fluorescence specific for tau fibrils, ACS Chem. Neurosci., 8, 2124-2131 (2017). https://doi.org/10.1021/acschemneuro.7b00224
  36. A. Loudet and K. Burgess, BODIPY dyes and their derivatives: Syntheses and spectroscopic properties, Chem. Rev., 107, 4891-4932 (2007). https://doi.org/10.1021/cr078381n
  37. H. Watanabe, M. Ono, K. Matsumura, M. Yoshimura, H. Kimura, and H. Saji, Molecular imaging of ß-amyloid plaques with near-infrared boron dipyrromethane (BODIPY)-based fluorescent probes, Mol. Imaging, 12, 338-347 (2013).
  38. L. Teoh, D. Su, S. Sahu, S. W. Yun, E. Drummond, F. Prelli, S. Lim, S. Cho, S. Ham, T. Wisniewski, and Y. T. Chang, A chemical fluorescent probes for the detection of Aβ oligomers, J. Am. Chem. Soc., 137, 13503 (2015). https://doi.org/10.1021/jacs.5b06190
  39. W. Ren, J. Zhang, C. Peng, H. Xiang, J. Chen, C. Peng, W. Zhu, R. Huang, H. Zhang, and Y. Hu, Fluorescent imaging of beta-amyloid using BODIPY based near-infrared off-on fluorescent probe, Bioconjugate Chem., 29, 3459-3466 (2018). https://doi.org/10.1021/acs.bioconjchem.8b00623
  40. P. Verwilst, H.-R. Kim, J. Seo, N.-W. Sohn, S.-Y. Cha, Y. Kim, S. Maeng, J.-W. Shin, J. H. Kwak, C. Kang, and J. S. Kim, Rational design of in vivo tau tangle-selective near infrared fluorophores: Expanding the BODIPY universe, J. Am. Chem. Soc., 139, 13393-13403 (2017). https://doi.org/10.1021/jacs.7b05878
  41. W. Yang, Y. Wong, O. T. Ng, L. P. Bai, D. W. Kwong, Y. Ke, Z. H. Jiang, H. W. Li, K. K. Yung, and M. S. Wong, Inhibition of beta-amyloid peptide aggregation by multifunctionalcarbazole-based fluorophores, Angew. Chem. Int. Ed., 51, 1804-1810 (2012). https://doi.org/10.1002/anie.201104150
  42. Y. Li, D. Xu, S. L. Ho, H. W. Li, R. Yang, and M. S. Wong, A theranostic agent for in vivo near-infrared imaging of β-amyloid species and inhibition of β-amyloid aggregation, Biomaterials, 94, 84-92 (2016). https://doi.org/10.1016/j.biomaterials.2016.03.047