DOI QR코드

DOI QR Code

Molecular imaging of polarized macrophages in tumors

  • Ran Ji Yoo (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Yun-Sang Lee (Department of Nuclear Medicine, Seoul National University Hospital)
  • Received : 2021.06.19
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

Diversity and flexibility are two typical hallmarks of macrophages. Two types of macrophages, M1(classically activated macrophages) and M2(alternatively activated macrophages) exist at both ends of the commonly known macrophage polarization. M1 macrophages have inflammatory properties and are primarily responsible for defending against invading bacteria in our body. On the other hand, M2 macrophages are involved in anti-inflammatory responses and tissue remodeling. Polarized migration of macrophages is of increasing interest in regulating the initiation, generation, and resting phases of inflammatory diseases. In this review, it intend to discuss the properties and functions of tumor-associated macrophages based on polarized macrophages that affect inflammatory diseases. In addition, the purpose of this study is to investigate a molecular imaging approach that targets macrophages that affect tumor growth by controlling the polarization of macrophages that affect tumor diagnosis and treatment.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1C1C2004706 and 2021R1A2C3009427)

References

  1. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958-69. https://doi.org/10.1038/nri2448
  2. Duque GA, Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front Immunol. 2014;5:1-12.
  3. Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res. 2014;2.
  4. Lukic A, Larssen P, Fauland A, Samuelsson B, Wheelock CE, Gabrielsson S, et al. GM-CSF- and M-CSF-primed macrophages present similar resolving but distinct inflammatory lipid mediator signatures. FASEB J. 2017;31:4370-81. https://doi.org/10.1096/fj.201700319R
  5. Yao Y, Xu XH, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 2019;10:1-13. https://doi.org/10.3389/fimmu.2019.00001
  6. Mia S, Warnecke A, Zhang XM, Malmstrom V, Harris RA. An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-β yields a dominant immunosuppressive phenotype. Scand J Immunol. 2014;79:305-14. https://doi.org/10.1111/sji.12162
  7. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425-40.
  8. Espinoza-Jimenez A, Peon AN, Terrazas LI. Alternatively activated macrophages in types 1 and 2 diabetes. Mediators Inflamm. 2012;2012:815953.
  9. Parisi L, Gini E, Baci D, Tremolati M, Fanuli M, Bassani B, et al. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders? J Immunol Res. Hindawi; 2018;2018:8917804.
  10. Meshkani R, Vakili S. Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta. 2016;462:77-89. https://doi.org/10.1016/j.cca.2016.08.015
  11. Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44:450-62. https://doi.org/10.1016/j.immuni.2016.02.015
  12. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117:1155-66. https://doi.org/10.1172/JCI31422
  13. Lee WC, Hsu PY, Hsu HY. Stem cell factor produced by tumor cells expands myeloid-derived suppressor cells in mice. Sci Rep. 2020;10:1-11. https://doi.org/10.1038/s41598-019-56847-4
  14. Johnson BS, Mueller L, Si J, Collins SJ. The cytokines IL-3 and GM-CSF regulate the transcriptional activity of retinoic acid receptors in different in vitro models of myeloid differentiation. Blood. 2002;99:746-53. https://doi.org/10.1182/blood.V99.3.746
  15. Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35:5735-45. https://doi.org/10.1038/onc.2016.107
  16. He W, Liang P, Guo G, Huang Z, Niu Y, Dong L, et al. Repolarizing Myeloid-derived Suppressor Cells (MDSCs) with Cationic Polymers for Cancer Immunotherapy. Sci Rep. 2016;6:1-13.
  17. Ochando JC, Chen SH. Myeloid-derived suppressor cells in transplantation and cancer. Immunol Res. 2012;54:275-85. https://doi.org/10.1007/s12026-012-8335-1
  18. Yang WC, Ma G, Chen SH, Pan PY. Polarization and reprogramming of myeloid-derived suppressor cells. J Mol Cell Biol. 2013;5:207-209. https://doi.org/10.1093/jmcb/mjt009
  19. Elliott LA, Doherty GA, Sheahan K, Ryan EJ. Human tumor-infiltrating myeloid cells: Phenotypic and functional diversity. Front Immunol. 2017;8.
  20. Laviron M, Boissonnas A. Ontogeny of Tumor-Associated Macrophages. Front Immunol. 2019;10:1799.
  21. Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, et al. Circulating and Tumor-Infiltrating Myeloid-Derived Suppressor Cells in Patients with Colorectal Carcinoma. PLoS One. 2013;8.
  22. Mahmoud SMA, Lee AHS, Paish EC, Macmillan RD, Ellis IO, Green AR. Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol. 2012;65:159-63. https://doi.org/10.1136/jclinpath-2011-200355
  23. Ginhoux F, Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity. 2016;44:439-49. https://doi.org/10.1016/j.immuni.2016.02.024
  24. Theret M, Mounier R, Rossi F. The origins and non-canonical functions of macrophages in development and regeneration. Dev. 2019;146:1-14.
  25. Linehan E, Fitzgerald D. Ageing and the immune system: focus on macrophages. Eur J Microbiol Immunol. 2015;5:14-24.
  26. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007;10:1538-43.
  27. Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G, et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci. 2018;21:530-40. https://doi.org/10.1038/s41593-018-0090-8
  28. Mass E, Ballesteros I, Farlik M, Halbritter F, Gunther P, Crozet L, et al. Specification of tissue-resident macrophages during organogenesis. Science (80- ). 2016;353:1-32.
  29. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R PM. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science (80- ). 2010;325:612-6.
  30. Cortez-Retamozo V, Etzrodt M, Newton A, Ryan R, Pucci F, Sio SW, et al. Angiotensin II Drives the Production of Tumor-Promoting Macrophages. Immunity. 2013;38:296-308. https://doi.org/10.1016/j.immuni.2012.10.015
  31. Wu C, Hua Q, Zheng L. Generation of Myeloid Cells in Cancer: The Spleen Matters. Front Immunol. 2020;11:1-13. https://doi.org/10.3389/fimmu.2020.00001
  32. Sun JY, Shen J, Thibodeaux J, Huang G, Wang Y, Gao J, et al. In vivo optical imaging of folate receptor-β in head and neck squamous cell carcinoma. Laryngoscope. 2014;124:312-9.
  33. Sun X, Guo L, Shang M, Shi D, Liang P, Jing X, et al. Ultrasound mediated destruction of lmw-ha-loaded and folate-conjugated nanobubble for tam targeting and reeducation. Int J Nanomedicine. 2020;15:1967-81. https://doi.org/10.2147/IJN.S238587
  34. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72:4165-77.
  35. Bathula N V., Bommadevara H, Hayes JM. Nanobodies: The Future of Antibody-Based Immune Therapeutics. Cancer Biother Radiopharm. 2021;36:109-22.
  36. Locke LW, Mayo MW, Yoo AD, Williams MB, Berr SS. PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes. Biomaterials. 2012;33:7785-93. https://doi.org/10.1016/j.biomaterials.2012.07.022
  37. Ng TSC, Garlin MA, Weissleder R, Miller MA. Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics. 2020;10:968-97. https://doi.org/10.7150/thno.37215
  38. Wildgruber M, Lee H, Chudnovskiy A, Yoon TJ, Etzrodt M, Pittet MJ, et al. Monocyte subset dynamics in human atherosclerosis can be profiled with magnetic nanosensors. PLoS One. 2009;4.
  39. Settles M, Etzrodt M, Kosanke K, Schiemann M, Zimmermann A, Meier R, et al. Different capacity of monocyte subsets to phagocytose Iron-Oxide nanoparticles. PLoS One. 2011;6.
  40. Shih YYI, Hsu YH, Duong TQ, Lin SS, Chow KPN, Chang C. Longitudinal study of tumor-associated macrophages during tumor expansion using MRI. NMR Biomed. 2011;24:1353-60.
  41. Leimgruber A, Berger C, Cortez-Retamozo V, Etzrodt M, Newton AP, Waterman P, et al. Behavior of endogenous Tumor-associated macrophages assessed in vivo using a functionalized nanoparticle. Neoplasia. 2009;11:459-68. https://doi.org/10.1593/neo.09356
  42. Aghighi M, Theruvath AJ, Pareek A, Pisani LL, Alford R, Muehe AM, et al. Magnetic resonance imaging of tumor-associated macrophages: Clinical translation. Clin Cancer Res. 2018;24:4110-8. https://doi.org/10.1158/1078-0432.CCR-18-0673
  43. Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Polarization in Tumour Tissues. Nat Nanotechnol. 2016;11:986-94.
  44. He H, Chiu AC, Kanada M, Schaar BT, Krishnan V, Contag CH, et al. Imaging of Tumor-Associated Macrophages in a Transgenic Mouse Model of Orthotopic Ovarian Cancer. Mol Imaging Biol. 2017;19:694-702. https://doi.org/10.1007/s11307-017-1061-2
  45. Choi YJ, Oh SG, Singh TD, Ha JH, Kim DW, Lee SW, et al. Visualization of the Biological Behavior of Tumor-Associated Macrophages in Living Mice with Colon Cancer Using Multimodal Optical Reporter Gene Imaging. Neoplasia. 2016;18:133-41. https://doi.org/10.1016/j.neo.2016.01.004
  46. Aalipour A, Chuang HY, Murty S, D'Souza AL, Park S min, Gulati GS, et al. Engineered immune cells as highly sensitive cancer diagnostics. Nat Biotechnol. 2019;37:531-9. https://doi.org/10.1038/s41587-019-0064-8