• Title/Summary/Keyword: Imaging probes

Search Result 154, Processing Time 0.022 seconds

Radiolabeling Methods Used for Preparation of Molecular Probes (분자영상 방사성추적자의 생산에 사용되는 방사성동위 원소 표지방법)

  • Choe, Yearn-Seong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.121-130
    • /
    • 2004
  • Molecular imaging visualizes cellular processes at a molecular or genetic level in living subjects, and diverse molecular probes are used for this purpose. Radiolabeling methods as well as radioisotopes are very important in preparation of molecular probes, because they can affect the biodistribution in tissues and the excretion route. In this review, the molecular probes are divided into small organic molecules and macromolecules such as peptides and proteins, and their commonly used radiolabeling methods are described.

Development of inside-out probes for both Nuclear Magnetic Resonance Imaging and Nuclear Magnetic Resonance Spectroscopy (핵자기공명 영상법과 핵자기공명 분광법을 위한 뒤집음-탐침의 개발에 대한 연구)

  • Lee, Dong-Hun;Go, Rak-Gil;Jeong, Eun-Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.309-316
    • /
    • 1995
  • RF (radio-frequency) probes of Nuclear Magnetic Resonance are one of the important factors and should be designed and built properly depending upon the geometry of the samples and the information. In general there are two kinds of rf probes : one encircles the sample while the other is placed on the surface of the sample. However, in case that the samples on human internal organs have a tube shape, the two kinds of rf probes, as specified above, are usually unsuitable for the internal imaging due to the degradation of signal-to-noise ratios (SNR's). In this case a probe should be positioned as close to the area as possible by putting the probe in the tubelike sample to improve filling factor In the present study inside-out probes have been constructed in the three different shapes such as an anti-solenoidal, a saddle and a dual surface types. RF-field distributions have also been calculated depending upon the geometrical changes of anti-solenoid probes. Moreover, the performance of the inside-out probes has been checked by measuring SNR's of the images acquired. The inside-out probes constructed in this study produced better SWR's and rf-field uniformity in the area close to the probes in comparing with any other commercial probes. There is a high feasibility that the constructed probes in the present study are applicable to the diagnosis of human bodies.

  • PDF

Gamma camera/MR dual imaging liposome labeled with radioisotope and paramagnetic ions

  • Kim, Youn Ji;Kim, Jonghee;Lee, Woonghee;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • Liposomes are defined as spherical, self-closed structures formed by lipid bilayers containing aqueous phase. Most liposomes are composed of various amphipathic lipids such as phospholipids and cholesterol. We used amphipathic lipids (DPPC, DPPG) as liposome components and prepared around 100 nm liposomes by standard extrusion method. Nuclear/MR dual imaging agents based on liposome platform were prepared by adding radioactive $^{131}I$-HIB (hexadecyl-4-tributylstannylbenzoate) and Gd-DTPA into liposome bilayer and inside liposome, respectively. Gamma camera and MR imaging both showed signal increases in liver.

Molecular imaging of atherosclerosis using reporter gene system

  • Yoo, Ran Ji;Lee, Kyochul;Kang, Joo Hyun;Lee, Yong Jin
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.1
    • /
    • pp.26-31
    • /
    • 2018
  • Macrophages play a key role in atherosclerotic plaque formation, but their participation has been discerned largely via ex vivo analyses of atherosclerotic lesions. Therefore, we aimed to identify atherosclerosis on noninvasive in vivo imaging using reporter gene system. This study demonstrated that recruitment of macrophages could be detected in atherosclerotic plaques of Apolipoprotein E knockout (ApoE-/-) mice with a sodium iodide symporter (NIS) gene imaging system using $^{99m}Tc-SPECT$. This novel approach to tracking macrophages to atherosclerotic plaques in vivo could have applications in studies of arteriosclerotic vascular disease.

Synthesis of dimeric fluorescent TSPO ligand for detection of glioma

  • Tien Tan Bui;Hee-Kwon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • TSPO, an 18-kDa translocator protein, is a peripheral-type benzodiazepine receptor that has been associated to a variety of biological activities such as apoptosis, steroidogenesis, and cell proliferation. Because TSPO overexpression has been found in various forms of cancer, it has recently become one of the most appealing biological targets for cancer therapies and detection. In order to create new optical imaging agents for improved diagnostics, we synthesized a novel dimeric fluorescent TSPO ligand based on PRB28 structure and SCy5.5. Following the preparation of the novel TSPO ligand, in vivo and ex vivo imaging tests were performed to examine the tumor uptake characteristics of the fluorescent TSPO ligand in a glioma animal model, and it was found that novel TSPO ligand was accumulated in glioma. These results suggested that novel dimeric fluorescent TSPO ligand will be applied to detect glioma.

Development of radiolabeled somatostatin derivatives for neuroendocrine tumors

  • Hee-Kwon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.127-131
    • /
    • 2021
  • Neuroendocrine tumor is one of popular diseases, and somatostatin receptor antagonists have been considered as promising agents for neuroendocrine tumors. Imaging of somatostatin receptor is useful approach on the diagnosis and therapy of neuroendocrine tumors. Thus, several radiolabeled somatostatin derivatives have been developed by scientists, and used for patients with neuroendocrine tumors. In particular, some radiopharmaceuticals for neuroendocrine tumors were approved by FDA. In this highlight review, the development of important radiolabeled somatostatin derivatives is described.

Synthesis of 68Ga-labeled gold nanoparticles for tumor targeted positron emission tomography imaging

  • Jeon, Jongho;Choi, Mi Hee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.46-52
    • /
    • 2015
  • Herein we present the synthesis of $^{68}Ga$-labeled gold nanoparticles for in vivo PET imaging. A novel chelator DTPA-Cys was easily prepared from diethylenetriaminepentaacetic dianhydride in high yield. The ${\alpha}_v{\beta}_3$ integrin receptor targeted gold nanoparticle probe was synthesized by using DTPA-Cys, polyethylene glycol and cRGD peptide. $^{68}Ga$ labeling of cRGD conjugated gold nanoparticle was carried out at $40^{\circ}C$ for 30 min. Observed radiochemical yield was more than 75% as determined by radio-TLC and the probe was purified by centrifugation. In vitro stability test showed that 90% of $^{68}Ga$-labeled gold nanoparticle probe was stable in FBS for 1 h. Those results demonstrated that $^{68}Ga$-labeled gold nanoparticle could be used as a potentially useful probe for specific tumor imaging.

A novel tricyclic derivative for PET imaging of the translocator protein

  • Kwon, Young-Do;Kim, Hee-Kwon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.37-42
    • /
    • 2016
  • The translocator protein (TSPO) has attracted scientist's attention for Positron Emission Tomography (PET) imaging due to correlation with brain cancer, stroke, and neurodegeneration. Recently, GE-180, a novel tricyclic derivative has been developed as a new high affinity agent for the TSPO and evaluated to confirm a possibility for the TSPO ligand. In this highlight review, several studies for the novel TSPO radiotracer are described.

Synthesis and evaluation of metal purine-type complexes for lung cancer imaging

  • Kang, Kyeung Jun;Ko, In Ok;Park, Ji-Ae;Kim, Jung Young
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Purine type compounds has been recently reported to cause the death for lung cancer cell, related to microtubules-targeting agents (MTAs). Therefore it can be used to develop as theranostic radiopharmceuticals in nuclear medicine or gadolinium-based MRI imaging agents by chelate chemistry. In the study, we tried to chemically bind a DOTA chelate on the end of purine compound and obtained a specific conjugate of DOTA-purine for metal coordination. In particular, radiometal like Cu-64, for the development of MRI imaging agents, can be utilized to choice good candidates before the synthesis of gadolinium complexes. By the screening of radioisotope technique, Gd-DOTA-purine type complex was successfully prepared and showed MRI imaging for lung cancer cell into the mouse model.