DOI QR코드

DOI QR Code

Gamma camera/MR dual imaging liposome labeled with radioisotope and paramagnetic ions

  • Kim, Youn Ji (Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine) ;
  • Kim, Jonghee (Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine) ;
  • Lee, Woonghee (Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine) ;
  • Yoo, Jeongsoo (Department of Molecular Medicine, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine)
  • Received : 2016.12.09
  • Accepted : 2017.06.23
  • Published : 2017.06.30

Abstract

Liposomes are defined as spherical, self-closed structures formed by lipid bilayers containing aqueous phase. Most liposomes are composed of various amphipathic lipids such as phospholipids and cholesterol. We used amphipathic lipids (DPPC, DPPG) as liposome components and prepared around 100 nm liposomes by standard extrusion method. Nuclear/MR dual imaging agents based on liposome platform were prepared by adding radioactive $^{131}I$-HIB (hexadecyl-4-tributylstannylbenzoate) and Gd-DTPA into liposome bilayer and inside liposome, respectively. Gamma camera and MR imaging both showed signal increases in liver.

Keywords

References

  1. Gregory G. Liposome Technology. 3rd ed. Informa Healthcare USA; 2006. p. 49-64.
  2. Weissig V. Liposomes: Methods and Protocols, Volume 2: Biological Membrane Models, Humn Press; 2009. p. 152-178.
  3. Louie A. Multimodality Imaging Probes: Design and Challenges. Chemical Reviews (Washington, DC, United States) 2010; 110: 3146-3195. https://doi.org/10.1021/cr9003538
  4. Jarzyna PA, Gianella A. Multifunctional imaging nanoprobes. Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2010; 2: 138-150. https://doi.org/10.1002/wnan.72
  5. Krug HF, Wick P. Angewandte Chemie, International Edition 2011; 50: 126-200.
  6. Landsiedel R, Ma-Hock L. Testing metal-oxide nanomaterials for human safety. Advanced Materials (Weinheim, Germany) 2010; 22: 2601-2627. https://doi.org/10.1002/adma.200902658
  7. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agent: Considerations and caveats. Nanomedicine (London, United Kingdom) 2008; 3: 703-717.
  8. Mulder WJ, Strijkers GJ, van TGA, Cormode DP, Fayad ZA, Nicolay K. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Acc. Chem. Res. 2009; 42: 904-914. https://doi.org/10.1021/ar800223c
  9. Goins BA. Radiolabeled lipid nanoparticles for diagnostic imaging. Expert Opin. Med. Diagn. 2008; 2: 853-873. https://doi.org/10.1517/17530059.2.7.853
  10. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discovery 2005; 4: 145-160. https://doi.org/10.1038/nrd1632
  11. Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr. Drug Delivery 2007; 4: 297-305. https://doi.org/10.2174/156720107782151269
  12. Zou J, Sood R, Ranjan S, Poe D, Ramadan UA, Kinnunen PKJ, Pykko I. Manufacturing and in vivo inner ear visualization of MRI traceable liposome nanoparticles encapsulating gadolinium. Journal of Nanobiotechnology 2010; 8: 32. https://doi.org/10.1186/1477-3155-8-32
  13. Theresa M, Allen A. Advanced Drug Delivery: Perspectives and Prospects 2013; 65: 36-48. https://doi.org/10.1016/j.addr.2012.09.037
  14. Cole JT, Holland NB. Multifunctional nanoparticles for use in theranostic applications. Drug Deliv Transl Res 2015; 5: 295-309. https://doi.org/10.1007/s13346-015-0218-2
  15. Nehoff H, Parayath NN. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine. 2014; 22: 2539-2555.
  16. Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 2013; 65: 36-48. https://doi.org/10.1016/j.addr.2012.09.037
  17. Urbinati G, Marsaud V, Renoir J-M. Anticancer Drugs in Liposomal Nanodevices: A Target Delivery for a Targeted Therapy. Current topics in medicinal chemistry 2012; 12: 1693-1712. https://doi.org/10.2174/156802612803531423
  18. Yang L, Broom MF, Tucker IG. Characterization of a Nanoparticulate Drug Delivery System Using Scanning Ion Occlusion Sensing. Pharmaceutical Research 2012; 29: 2578-2586. https://doi.org/10.1007/s11095-012-0788-3
  19. Song G. Factors affecting the pharmacokinetics and pharmacodynamics of liposomal drugs. Journal of Liposome Research 2012; 22: 177-192. https://doi.org/10.3109/08982104.2012.655285
  20. Maghraby GEEl, Carry BW, Williams AC. Liposome and skin: From drug delivery to model membrane. Eur. J. Pharm. Sci. 2008; 34: 203-222. https://doi.org/10.1016/j.ejps.2008.05.002
  21. Kim JH, Kim HM. Liposome. Biochem. Chongseoljip 1988;2 : 237-246
  22. Jang SK, An SK. The Moisturizing Effect and Formulation Test of the Cosmetics Composed by Horse Oil Liposomes. Kor. J. Aesthet. Cosmetol 2014; 12: 813-820.-
  23. Wee TI, Teon YW, Cho YJ. Preparation of Gold Coated Liposomes for CT Contrast Medium. Journal of the Korean Chemical Society 2013; 57: 634-639. https://doi.org/10.5012/jkcs.2013.57.5.634
  24. Krause W, Schonborn A, Rupp K. CT imaging with iopromide liposomes in a rabbit model. J. Liposome Res 2011; 21: 229−236. https://doi.org/10.3109/08982104.2010.527852
  25. Kang EA, Kim KM. Properties and rapid consolidation of nanostructured WC and WC-10 J Korean Med Assoc 2009; 52: 125-130. https://doi.org/10.5124/jkma.2009.52.2.125
  26. Jonas RH, Anncatrine LP. ACS Appl. Mater. Interfaces, 2015; 7: 2796-2810.
  27. Andrew WW, Eleanor O. A comparison of image contrast with 64Cu-labeled long circulating liposomes and 18F-FDG in a murine model of mammary carcinoma. Am J Nucl Med Mol Imaging 2013; 3: 32-43.
  28. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422: 37-44. https://doi.org/10.1038/nature01451
  29. Hwang HY, Kim IS. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release 2008; 128: 23-31. https://doi.org/10.1016/j.jconrel.2008.02.003
  30. Cho YW, Park SA. In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: Mechanisms, key factors, and their implications. Biomaterials 2007; 28: 1236-1247. https://doi.org/10.1016/j.biomaterials.2006.10.002
  31. Kim J, Darpan NP, Lee W. Vivid Tumor Imaging Utilizing Liposome-Carried Bimodal Radiotracer. ACS Med. Chem. Lett 2014; 5: 390−394. https://doi.org/10.1021/ml400513g