• Title/Summary/Keyword: Imaging phantoms

Search Result 114, Processing Time 0.02 seconds

Effective dose from direct and indirect digital panoramic units

  • Lee, Gun-Sun;Kim, Jin-Soo;Seo, Yo-Seob;Kim, Jae-Duk
    • Imaging Science in Dentistry
    • /
    • v.43 no.2
    • /
    • pp.77-84
    • /
    • 2013
  • Purpose: This study aimed to provide comparative measurements of the effective dose from direct and indirect digital panoramic units according to phantoms and exposure parameters. Materials and Methods: Dose measurements were carried out using a head phantom representing an average man (175 cm tall, 73.5 kg male) and a limbless whole body phantom representing an average woman (155 cm tall, 50 kg female). Lithium fluoride thermoluminescent dosimeter (TLD) chips were used for the dosimeter. Two direct and 2 indirect digital panoramic units were evaluated in this study. Effective doses were derived using 2007 International Commission on Radiological Protection (ICRP) recommendations. Results: The effective doses of the 4 digital panoramic units ranged between $8.9{\mu}Sv$ and $37.8{\mu}Sv$. By using the head phantom, the effective doses from the direct digital panoramic units ($37.8{\mu}Sv$, $27.6{\mu}Sv$) were higher than those from the indirect units ($8.9{\mu}Sv$, $15.9{\mu}Sv$). The same panoramic unit showed the difference in effective doses according to the gender of the phantom, numbers and locations of TLDs, and kVp. Conclusion: To reasonably assess the radiation risk from various dental radiographic units, the effective doses should be obtained with the same numbers and locations of TLDs, and with standard hospital exposure. After that, it is necessary to survey the effective doses from various dental radiographic units according to the gender with the corresponding phantom.

Convergence Comparison of Metal Artifact Reduction Rate for Pacemaker Insertion of CT Imaging Phantoms in the Raw Data with MAR Algorithm (심박조율기 삽입 팬텀의 CT영상 원시데이터에 금속인공물감소 알고리즘 적용 시 금속인공물 감소율의 융합적 비교)

  • Kim, Hyeon-ju;Yoon, Joon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • In the analyzed cardiac CT algorithm applied when comparing the MAR self-made metal artifact reduction in pacemaker inserted phantom degree. Result of comparing the energy value by CT showed a decrease in the CT value in the case of BKG 40 KeV in WSA maximum decreased to 663.2% in the case of 140 KeV BHA were increased a maximum of 56.2%. In addition, the maximum was decreased by approximately 145% based on a 70 KeV artifacts in CT value comparison by type WSA, BHA was to increase up to approximately 46.38%. MAR Algorithm is believed to provide a more quality cardiac CT image if the energy changes, or have the effect that by type and irrespective of reduced metal artifacts occurrence of artifacts applied to the pacemaker when tracking a heart CT scan after inserting MAR algorithm.

The Detection of Intracranial Calcification by MR : Experimental Model (실험적 모델을 이용한 자기공명영상에서 석회화의 인지)

  • 박승진
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.3-12
    • /
    • 1994
  • Purporse : It is known that detection of calcification by MRI is difficulty in intracranial calcified lesions, but author tried to evaluate the signal intensity image of calcification by MR with experimental model. Subjects & Methods : Author analyzed and compared with values of calcium carbonate and hydroxyapatite phantoms by each concentration (10, 20, 30, 40, 50%) and size(1-10mm), measured ROI attenuating from CT and MRI(TlWI & T2WI). Results : The high concentration of calcium carbonate is, the lower the signal intensity of calcium carbonate phantom is both T1 & T2WI. For concentration of Hydroxyapatite of up to 30% by weight the signal intensity on standard T1 weighted images increased but subsequently decreased. Hyperintensity does not preclude calcification as a cause of the signal alteration-an observation that all radiologists interpreting MR images need to be aware of. Conclusion: The signal intensity of intracranial calcification is various on MR imaging in concerning with components, concentration, & size of calcification, and especially high signal intensity of intracranial calcification noted differencial diagnosis.

  • PDF

Optimization of PET Scan Time Using Phantom Studies (팬텀 영상을 이용한 PET 스캔시간의 최적화 연구)

  • 정하규;김동현;정해조;손혜경;홍순일;윤미진;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.139-148
    • /
    • 2002
  • The measured attenuation correction with transmission (Tx) scans produced quantitatively accurate images. However, it was not clear for optimal emission (Ex) and Tx scan time in PET imaging. This study was to evaluate acceptable Ex and Tx scan time by simulating clinical situations using various phantoms. Cylindrical and NEMA phantom were used for $^{18}$ F-PET scan using 2D protocol in GE Advance PETTM scanner. Cylindrical phantom was filled with 136 MBq 18F, and five regions of interests (ROI) were drawn on 23 slices. NEMA phantom had three inserts containing water, air and polytetrafluoro-ethylene (PTFE). Outside of these inserts were filled with 309 MBq of $^{18}$ F, and total 12 ROIs were drawn on 23 slices. Scans were carried out according to five Ex scan times: 2, 5, 10, 15, and 30 min, and nine Tx scan times: 2, 3, 4, 5, 7, 10, 15, 20, and 30 min. Images were reconstructed using measured attenuation correction, and ROI analyses were performed for all images, and mean, standard deviation (SD), coefficient of variation and percent errors were calculated. For cylindrical phantom study, ROI mean and SD were decreased as Ex and Tx time increased. Coefficients of variation were kept constant, when Tx was greater than 10 min. The amount of error decreased for the increment of Ex time from 10 min to 15 min was almost the same to that from 15 min to 30 min. In NEMA phantom Tx 15 min showed the lowest er개r level when the percent errors for three inserts were summed for all of the Ex times. This study suggested that Ex 15 min and Tx 15 min were acceptable as optimal scan time for the scanning protocol and the dose of radiopharmaceuticals used in these phantom study.

  • PDF

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

Implementation of Nuclear Medicine Dynamic Cardiac Phantom for Clinical Application (임상적용을 위한 핵의학 동적 심장팬텀의 구현)

  • Lee, Joo-Young;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.53-59
    • /
    • 2019
  • In the field of nuclear medicine, the various static phantoms of international standards are used to assess the performance of the nuclear medicine equipment. However, we only reproduced a fixed situation in spite of the movement of the cardiac, and the demands for dynamic situations have been continuously raised. More research is necessary to address these challenges. This study used flexible materials to design the dynamic cardiac phantom, taking into account the various clinical situations. It also intended to reproduce the images through dynamic cardiac flow to confirm the usefulness of the proposed technique. The frame of dynamic cardiac phantom was produced based on the international standard phantom. A nuclear medicine dynamic cardiac phantom was produced rubber material and silicone implemented by 3D printing technique to reproduce endocardium and epicardium movement. Therefore we compared and evaluated the image of a cardiac phantom made of rubber material and a cardiac phantom made of silicone material by 3D printing technique. According to the results of this study, the analysis of the Summed Rest Score(SRS) showed abnormalities in the image of a cardiac phantom made of rubber material at 10, 20, and 30 stroke rates, but the image of a cardiac phantom made of silicone material by 3D printing technique showed normal levels. And the analysis of the Total Perfusion Deficit(TPD) showed that TPD in the image of a cardiac phantom made of rubber material was higher than that of the image of a cardiac phantom made of silicone material by 3D printing technique at 10, 20, and 30 stroke rates. The potential for clinical application of the proposed method was confirmed in the dynamic cardiac phantom implemented with 3D printing technique. It is believed that the objective information secures the reliability of inspection equipment and it contributes to improve the diagnostic value of nuclear medicine.

Evaluation of Machine Learning Methods to Reduce Stripe Artifacts in the Phase Contrast Image due to Line-Integration Process (선적분에 의한 위상차 영상의 줄무늬 아티팩트 감소를 위한 기계학습법에 대한 평가)

  • Kim, Myungkeun;Oh, Ohsung;Lee, Seho;Lee, Seung Wook
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.937-946
    • /
    • 2020
  • The grating interferometer provides the differential phase contrast image of an phase object due to refraction of the wavefront by the object, and it needs to be converted to the phase contrast image. The line-integration process to obtain the phase contrast image from a differential phase contrast image accumulates noise and generate stripe artifacts. The stripe artifacts have noise and distortion increases to the integration direction in the line-integrated phase contrast image. In this study, we have configured and compared several machine learning methods to reduce the artifacts. The machine learning methods have been applied to simulated numerical phantoms as well as experimental data from the X-ray and neutron grating interferometer for comparison. As a result, the combination of the wavelet preprocessing and machine learning method (WCNN) has shown to be the most effective.

Potential impact of metal crowns at varying distances from a carious lesion on its detection on cone-beam computed tomography scans with several protocols

  • Matheus Barros-Costa;Eduarda Helena Leandro Nascimento;Iago Filipe Correia-Dantas;Matheus L. Oliveira;Deborah Queiroz Freitas
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • Purpose: This study evaluated the impact of artifacts generated by metal crowns on the detection of proximal caries lesions in teeth at various distances using cone-beam computed tomography (CBCT). Additionally, the diagnostic impacts of tube current and metal artifact reduction (MAR) were investigated. Materials and Methods: Thirty teeth were arranged within 10 phantoms, each containing 1 first premolar, 1 second premolar, and 1 second molar. A sound first molar (for the control group) or a tooth with a metal crown was placed. Of the 60 proximal surfaces evaluated, 15 were sound and 45 exhibited enamel caries. CBCT scans were acquired using an OP300 Maxio unit (Instrumentarium, Tuusula, Finland), while varying the tube current (4, 8, or 12.5 mA) and enabling or disabling MAR. Five observers assessed mesial and distal surfaces using a 5-point scale. Multi-way analysis of variance was employed for data comparison, with P<0.05 indicating statistical significance. Results: The area under the curve (AUC) varied from 0.40 to 0.60 (sensitivity: 0.28-0.45, specificity: 0.44-0.80). The diagnostic accuracy was not significantly affected by the presence of a metal crown, milliamperage, or MAR(P>0.05). However, the overall AUC and specificity were significantly lower for surfaces near a crown (P<0.05). Conclusion: CBCT-based caries detection was not influenced by the presence of a metal crown, variations in milliamperage, or MAR activation. However, the diagnostic accuracy was low and was further diminished for surfaces near a crown. Consequently, CBCT is not recommended for the detection of incipient caries lesions.

Influence of Heart Rate and Innovative Motion-Correction Algorithm on Coronary Artery Image Quality and Measurement Accuracy Using 256-Detector Row Computed Tomography Scanner: Phantom Study

  • Jeong Bin Park;Yeon Joo Jeong;Geewon Lee;Nam Kyung Lee;Jin You Kim;Ji Won Lee
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Objective: To investigate the efficacy of motion-correction algorithm (MCA) in improving coronary artery image quality and measurement accuracy using an anthropomorphic dynamic heart phantom and 256-detector row computed tomography (CT) scanner. Materials and Methods: An anthropomorphic dynamic heart phantom was scanned under a static condition and under heart rate (HR) simulation of 50-120 beats per minute (bpm), and the obtained images were reconstructed using conventional algorithm (CA) and MCA. We compared the subjective image quality of coronary arteries using a four-point scale (1, excellent; 2, good; 3, fair; 4, poor) and measurement accuracy using measurement errors of the minimal luminal diameter (MLD) and minimal luminal area (MLA). Results: Compared with CA, MCA significantly improved the subjective image quality at HRs of 110 bpm (1.3 ± 0.3 vs. 1.9 ± 0.8, p = 0.003) and 120 bpm (1.7 ± 0.7 vs. 2.3 ± 0.6, p = 0.006). The measurement error of MLD significantly decreased on using MCA at 110 bpm (11.7 ± 5.9% vs. 18.4 ± 9.4%, p = 0.013) and 120 bpm (10.0 ± 7.3% vs. 25.0 ± 16.5%, p = 0.013). The measurement error of the MLA was also reduced using MCA at 110 bpm (19.2 ± 28.1% vs. 26.4 ± 21.6%, p = 0.028) and 120 bpm (17.9 ± 17.7% vs. 34.8 ± 19.6%, p = 0.018). Conclusion: Motion-correction algorithm can improve the coronary artery image quality and measurement accuracy at a high HR using an anthropomorphic dynamic heart phantom and 256-detector row CT scanner.

Defining the optimal technique for endoscopic ultrasound shear wave elastography: a combined benchtop and animal model study with comparison to transabdominal shear wave elastography

  • Thomas J. Wang;Marvin Ryou
    • Clinical Endoscopy
    • /
    • v.56 no.2
    • /
    • pp.229-238
    • /
    • 2023
  • Background/Aims: Shear wave elastography (SWE) is used for liver fibrosis staging based on stiffness measurements. It can be performed using endoscopic ultrasound (EUS) or a transabdominal approach. Transabdominal accuracy can be limited in patients with obesity because of the thick abdomen. Theoretically, EUS-SWE overcomes this limitation by internally assessing the liver. We aimed to define the optimal technique for EUS-SWE for future research and clinical use and compare its accuracy with that of transabdominal SWE. Methods: Benchtop study: A standardized phantom model was used. The compared variables included the region of interest (ROI) size, depth, and orientation and transducer pressure. Porcine study: Phantom models with varying stiffness values were surgically implanted between the hepatic lobes. Results: For EUS-SWE, a larger ROI size of 1.5 cm and a smaller ROI depth of 1 cm demonstrated a significantly higher accuracy. For transabdominal SWE, the ROI size was nonadjustable, and the optimal ROI depth ranged from 2 to 4 cm. The transducer pressure and ROI orientation did not significantly affect the accuracy. There were no significant differences in the accuracy between transabdominal SWE and EUS-SWE in the animal model. The variability among the operators was more pronounced for the higher stiffness values. Small lesion measurements were accurate only when the ROI was entirely situated within the lesion. Conclusions: We defined the optimal viewing windows for EUS-SWE and transabdominal SWE. The accuracy was comparable in the non-obese porcine model. EUS-SWE may have a higher utility for evaluating small lesions than transabdominal SWE.