
Background/Aims: Shear wave elastography (SWE) is used for liver fibrosis staging based on stiffness measurements. It can be per-
formed using endoscopic ultrasound (EUS) or a transabdominal approach. Transabdominal accuracy can be limited in patients with obe-
sity because of the thick abdomen. Theoretically, EUS-SWE overcomes this limitation by internally assessing the liver. We aimed to define 
the optimal technique for EUS-SWE for future research and clinical use and compare its accuracy with that of transabdominal SWE. 
Methods: Benchtop study: A standardized phantom model was used. The compared variables included the region of interest (ROI) 
size, depth, and orientation and transducer pressure. Porcine study: Phantom models with varying stiffness values were surgically im-
planted between the hepatic lobes. 
Results: For EUS-SWE, a larger ROI size of 1.5 cm and a smaller ROI depth of 1 cm demonstrated a significantly higher accuracy. For 
transabdominal SWE, the ROI size was nonadjustable, and the optimal ROI depth ranged from 2 to 4 cm. The transducer pressure and 
ROI orientation did not significantly affect the accuracy. There were no significant differences in the accuracy between transabdominal 
SWE and EUS-SWE in the animal model. The variability among the operators was more pronounced for the higher stiffness values. 
Small lesion measurements were accurate only when the ROI was entirely situated within the lesion. 
Conclusions: We defined the optimal viewing windows for EUS-SWE and transabdominal SWE. The accuracy was comparable in the 
non-obese porcine model. EUS-SWE may have a higher utility for evaluating small lesions than transabdominal SWE. 
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INTRODUCTION 

Elastography is a non-invasive imaging modality that provides 

information on the inherent elasticity of tissue by producing 
an acoustic radiofrequency force impulse and assessing the 
transversely oriented shear waves that propagate through sur-
rounding tissue.1 First described in the 1990s, elastography has 
diverged into numerous sub-modalities, including transient 
elastography (TE, more commonly known as FibroScan),2,3 
acoustic radiation force impulse,4,5 real-time elastography,6 
shear wave elastography (SWE),7,8 and magnetic resonance 
elastography.9 These different elastography techniques, with the 
exception of TE and magnetic resonance elastography, are per-
formed along with ultrasound to diagnose malignancy as well 
as benign changes in organ parenchyma by correlating stiffness 
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measurements to certain disease states (e.g., liver fibrosis or cir-
rhosis).10-12 

One particular area of interest that has been rapidly develop-
ing over the last few years is SWE. The basic premise of SWE is 
the transmission of shear waves from a probe that propagates 
through the issue perpendicular in velocity to the direction of 
the ultrasound beam, which is then translated to stiffness or 
elasticity measurements.8 This technology is safe and non-in-
vasive and has shown promise in many human studies over the 
past decade for diagnostic purposes, including both organ pa-
renchyma and lesions of interest.7,8,13-15 

Traditionally, SWE could only be deployed with a transab-
dominal transducer probe (i.e., probe pressed on the skin of 
the abdomen to visualize underlying structures), and the tech-
nology is available in select clinics across the United States for 
liver fibrosis staging, often coupled with transabdominal ultra-
sound.7 However, this technology is limited in its application 
in visualizing deeper tissues owing to lack of ultrasound/shear 
wave penetration.16 This is especially an issue in patients with 
obesity, in which a thicker abdominal wall yields an even great-
er distance between deeper tissues and the transducer probe 
and could reduce the ability to perform reliable elastography.17,18 
In one study, although transabdominal SWE could be reliably 
performed in patients with severe obesity, elastography mea-
surements in these patients when compared to those in another 
study who were non-obese demonstrated poorer correlation to 
liver biopsies via area under the receiver operating character-
istic (AUROC) analysis.19,20 Recently, endoscopic ultrasound 
SWE (EUS-SWE) systems (Arietta 850; Olympus America Inc., 
Center Valley, PA, USA) have become commercially available, 
which theoretically overcome this limitation by allowing assess-
ment of organ parenchyma (e.g., liver) internally across a thin 
gastrointestinal wall.21 This capability theoretically increases the 
diagnostic utility of SWE, as EUS-SWE bypasses the need to go 
through the skin and soft tissue when evaluating deeper organ 
parenchyma and potential lesions, thereby possibly achieving 
better imaging visualization and a lower noise-to-signal ratio. 

There have been preliminary clinical reports and studies on 
the EUS-SWE technology as early as 2019.21-24 However, they 
mostly pertain to pancreatic applications, and no studies have 
defined optimal techniques. Thus, the aims of this study were to 
establish the optimal technique for EUS-SWE in both benchtop 
and in vivo models and compare the performance characteris-
tics between EUS-SWE and transabdominal SWE. 

METHODS 

The study aims were explored in two steps: first, a benchtop 
study and second, an animal study using a healthy porcine 
model. A porcine model was selected as the experimental spe-
cies for this study because the size and anatomy similar to that 
of humans are clinically relevant for testing endoscopic devices. 
This model will allow for successful implementation and evalu-
ation of the EUS-SWE technology. 

Benchtop study 
A phantom model (Zerdine hydrogel polymer; Computerized 
Imaging Reference Systems Inc., Norfolk, VA, USA) with a 
reference stiffness value of 6.8 kPa was used for the EUS-SWE 
measurements. Both transabdominal and EUS elastography 
transducers (attached to the Aloka Arietta 850 Diagnostic Ul-
trasound System; Olympus America Inc.) were placed on top 
of the phantom model separately. An ultrasound image cou-
pled with a region of interest (ROI) (center orange box) (Fig. 
1) was then displayed. The ROI indicated the location of the 
elastography measurements. Variables, including the ROI size 
(length×width), ROI distance to the transducer (i.e., depth), 
ROI orientation relative to the transducer, and pressure exerted 
on the transducer, were independently evaluated to assess the 
impact on accuracy, as determined by the average percentage 
deviation from the reference stiffness across multiple mea-
surements. The percentage deviation was determined by the 
difference between the measured and reference stiffness values 
divided by the reference stiffness value (e.g., a difference of 1 
kPa between the measured and reference values with a refer-
ence value of 10 kPa will yield a 10% deviation). 

The stiffness value (kPa) was derived from the formula 
E=3Vs2ρ, where E is the stiffness in kilopascals (Young’s mod-
ulus); Vs is the median shear wave velocity detected by the 
elastography transducer; and ρ is the tissue density, which is 
referenced to be the same as that of water, of which the density 
is defaulted to 1.7 The device used generally provides a unique 
reliability index that determines how many Vs measurements 
are reliable, expressed as a percentage; this measurement was 
used to calculate the final Vs number and derive the stiffness 
value. Yada et al.25 in 2015 determined that when the reliability 
index (i.e., VsN) was less than 50%, accurate measurements 
tended to be difficult, and as such, the 50% cutoff was used as a 
benchmark for this study. 

For EUS-SWE, standard measurements were performed at 

230



an ROI size of 0.5 (length)×1 cm (width) and an ROI depth of 
2 cm, with the orientation centered on the screen and moder-
ate pressure exerted on the transducer probe. Each indepen-
dent variable was then adjusted separately: 0.5-cm increment 
changes in the ROI length (up to 1.5 cm for EUS-SWE; width 
not adjustable), 1-cm increment changes in the ROI depth, 
and ±45° in orientation, both on the left and right sides of the 
center. The pressure exerted on the transducer probe was also 
adjusted separately to include light, moderate, and heavy pres-
sures. Light pressure was defined as minimal pressure on the 
transducer while still touching the surface and without a change 
in ultrasound image quality, while heavy pressure was defined 
as exerting maximal pressure on the transducer, without any 
change in image quality. Moderate pressure was defined as the 
pressure operators would normally use in a clinical setting. For 
transabdominal SWE, the main differences were the nonadjust-
able setting in the ROI size, which was defaulted to 1.5×1.0 cm, 
and increased depth (up to 6 cm, instead of only 3 cm for EUS-
SWE). Twenty measurements were performed by two operators 
per iteration. 

Animal study (porcine model) 
All elastography measurements were performed in healthy 
pigs. Two male Yorkshire pigs were used for this study. The 
pigs averaged 40kg in weight (38 and 42 kg). The pigs were 
anesthetized using standard induction techniques to minimize 
discomfort and were placed under isoflurane gas to maintain 
sedation. Endotracheal intubation was performed, and vital 
signs were monitored by a trained technician to ensure that 

the pigs remained sedated and without signs of pain. An en-
doscope was then passed down the gastrointestinal tract of the 
pigs to perform a rapid survey of the anatomy and comply with 
feeding preparations. The endoscope was advanced beyond the 
pylorus into the duodenum to visualize the liver parenchyma 
using EUS. The pigs were then placed in the supine/dorsal re-
cumbency position, with surgical access to the abdomen creat-
ed through an abdominal incision using a scalpel. Four precut 
circular Zerdine hydrogen polymer blocks (10 cm in diameter) 
with known reference stiffness values of 2.0, 7.3, 19.2, and 37.0 
kPa were prepared. Each of them was individually implanted 
into the pig abdominal cavity one at a time (with exchange of 
any previous reference gel, if applicable). EUS-SWE and trans-
abdominal SWE measurements were performed for each refer-
ence polymer gel. Two operators performed ten measurements 
each for each modality and reference model combination. Two 
additional operators performed additional measurements to 
assess the variability in accuracy among the operators. After 
measurements for all four reference models were completed, 
a second experiment involving smaller blocks of a 2×2×2-cm 
19.2-kPa reference gel model inserted into the abdominal cav-
ity was performed. Measurements were obtained with the ROI 
placed both in the center and periphery of the lesion. After all 
measurements, the reference gels were removed, and the inci-
sion site was closed with sutures. The pigs were then humanely 
euthanized in accordance with the animal facility’s standard 
of practice and the American Veterinary Medical Association 
guidelines on euthanasia. 

All EUS-SWE and transabdominal SWE measurements were 

Fig. 1. Visualization of the adjustable region of interest (ROI) parameters on transabdominal shear wave elastography (SWE) and endoscopic 
ultrasound SWE (EUS-SWE). E, stiffness value (kPa); Vs, velocity (used to calculate the stiffness value using the formula E=3Vs2ρ); ATT, at-
tenuation coefficient (not analyzed in this study as it is only available for transabdominal SWE, not for EUS-SWE); VsN, reliability indicator.

ROI orientation
(45° left)

ROI depth

ROI length

ROI width
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then analyzed to obtain the average percentage deviation from 
the reference value and compared among elastography modali-
ty and reference stiffness values. Given the presence of multiple 
operators, interoperator variability was also analyzed. All sta-
tistical analyses were performed using the SAS ver. 9.4 software 
(SAS Institute, Cary, NC, USA). 

Ethical statements 
All animal care and use protocols were approved in accordance 
with the guidelines established by the Institutional Animal Care 
and Use Committee. 

RESULTS 

Benchtop study 
We reported the results based on the measurements in the 
phantom model with a reference stiffness value of 6.8 kPa. 
First, we measured the effect of the ROI size. A larger ROI was 
more accurate than a smaller ROI (4.3% for a 1.5-cm ROI size 
vs. 10.3% and 15.0% for 1- and 0.5-cm ROI sizes, p=0.001 and 
0.001, respectively) (Fig. 2A). Second, we examined the ROI 
depth. Shallower measurements were more accurate than deep-
er measurements (8.5% average deviation at a 1-cm depth vs. 
15.0% at a 2-cm depth, p=0.020, and 22.3% at a 3-cm depth, 
p=0.0012) (Fig. 2B). Measurements were performed up to a 
depth of 3 cm without losing the ultrasound image quality. No 
significant differences were found when the ROI was rotated 
by 45° in either direction or with changes in pressure exerted 
on the transducer probe (p>0.05 for all pairwise comparisons) 
(Fig. 2C, D). More than 90% of the measurements were able to 
achieve a VsN of 50% or greater. 

For transabdominal SWE, the ROI size could not be adjusted, 
with default settings of 1.5 cm in height. ROI measurements 
could be extended further to a distance of 6 cm without los-
ing the ultrasound image quality. A 2–4-cm depth yielded the 
greatest accuracy (–5% to 10% deviation from the reference 
stiffness value). At depths of 1 and 5 cm or greater, the accuracy 
averaged 15% deviation or higher (p<0.05 for all pairwise com-
binations between depths of 2–4 and 1, 5, and 6 cm) (Fig. 3). 
Changes in the orientation or pressure on the transducer probe 
for transabdominal SWE also did not result in any difference 
in accuracy (p>0.05 for all pairwise comparisons; results not 
shown). 

The reliable indicator (VsN) was consistently above 90% on 
average for all transabdominal SWE and EUS-SWE measure-
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Fig. 2. Comparison of the changes in the region of interest (ROI) size 
(A), ROI depth (B), ROI orientation (C), and pressure exerted by the 
transducer probe (D) relative to the accuracy of the measurements 
on endoscopic ultrasound shear wave elastography. All measure-
ments are reported as averages±standard errors. Significant p-values 
(p<0.05) for pairwise comparisons are shown. Non-significant differ-
ences are not shown.

ments in the benchtop study. 

Animal study (porcine model) 
In vivo stiffness measurements for transabdominal SWE and 
EUS-SWE were compared against those of four phantom mod-
els (reference stiffness values of 2.0, 7.3, 19.2, and 37.0 kPa) im-
planted in the porcine model. The abdominal wall thickness in 
the porcine model was 0.5 cm. A total of 20 measurements were 
performed per phantom model stiffness for both transabdom-
inal SWE and EUS-SWE. There were no significant differences 
between the two modalities (p>0.05 for all pairwise compari-
sons) (Fig. 4). The reliability indicator (VsN) was consistently 
above 50% for 7.3 kPa and higher, but was low for 2.0 kPa (av-
erage of 33% for transabdominal SWE and 72% for EUS-SWE, 
p<0.0001) (Supplementary Fig. 1). However, in the scatter-plot 
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analysis, there was no significant correlation between the VsN 
and percentage deviation from the reference stiffness value 
across all reference stiffness models (Supplementary Fig. 2). 

There was no significant interoperator variability for the low-
er stiffness values of 2.0 and 7.3 kPa when comparing the per-
centage deviation among the four operators, while a significant 
variability was present for the higher stiffness values of 19.2 and 
37.0 kPa for both EUS-SWE and transabdominal SWE. Figure 
5 shows the percentage deviation for 7.3 kPa (top) and 19.2 kPa 
(bottom) as representation of the lower and higher stiffness val-
ue models, respectively. 

Finally, we explored the quality and accuracy of the mea-
surements obtained via EUS-SWE on smaller blocks of phan-
tom-model polymer gel in the shape of 2×2-cm blocks inserted 
into the pig abdominal cavity, mimicking smaller lesions in the 
clinical realm. The ROI (1×0.5 cm) was centered entirely with-
in the lesion of interest (19.2 kPa reference phantom model) 
and then adjusted to include the periphery and outside tissue. 
There was a considerable difference in the percentage deviation 
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Fig. 5. Assessment of the variability in the accuracy among the operators for transabdominal shear wave elastography (SWE) and endoscopic 
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EUS and transabdominal SWE, respectively), whereas for 19.2 kPa ([C, D] for EUS and transabdominal SWE, respectively) there were some 
pairwise differences in % deviation between operators.

between the two views (17% for the centered ROI vs. 77% for 
the non-centered ROI, p=0.0032, n=6 for each view) (Fig. 6). 
The VsN was not an accurate predictor for a higher percentage 
deviation; 100% and 83% of the measurements for the centered 
and non-centered ROI, respectively, had a VsN of greater than 
60%. 

DISCUSSION 

To our knowledge, this is the first study to systematically eval-
uate the performance characteristics in terms of accuracy and 
reliability between EUS-SWE and transabdominal SWE in 
both benchtop and in vivo animal studies. We found that the 
ROI size and depth both have an impact on accuracy, with an 
optimal ROI size of 1.5 cm and optimal depth of 2 cm or less 
for EUS-SWE and optimal depth of 2 to 4 cm for transabdom-
inal SWE. Notably, there is no ability to adjust the ROI size 
for transabdominal SWE, with default settings of 1.5 cm. The 
ROI orientation and pressure exerted on the transducer probe 
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did not significantly affect the accuracy of the findings. We 
also observed no significant differences in accuracy between 
EUS-SWE and transabdominal SWE for varying stiffness 
values based on our in vivo animal study, and EUS-SWE was 
not optimized to evaluate smaller lesions of interest unless the 
entire ROI could fit within the lesion. The reliability indicator 
(VsN) was significantly lower in transabdominal SWE than in 
EUS-SWE, particularly for the lowest stiffness value of 2.0 kPa; 
however, this did not significantly impact the accuracy. Finally, 
there was some variability in the accuracy among the operators 
for both transabdominal SWE and EUS-SWE, which was more 
pronounced at the higher stiffness values.  

EUS-SWE has many theoretical advantages over transab-
dominal SWE; hence, this study was performed. The most 
important advantage is the reproducible close proximity of the 
EUS transducer to the liver, pancreas, and other gastrointes-
tinal targets (approximately 1 cm distance), regardless of the 
transgastric/transduodenal view and body habitus. In contrast, 
transabdominal evaluation can be impeded by a thick abdom-
inal wall, which is more frequent in patients with obesity. This 
is especially important when assessing patients with non-alco-
holic fatty liver disease, in whom obesity is highly prevalent. 
Among patients with obesity, both SWE and standard TE have 
demonstrated reduced accuracy and higher failure rates.18-20 In 

one study, standard TE yielded a 10-fold higher odds ratio for 
a body mass index of ≥28 kg/m2.26 For TE, XL probes are often 
required to obtain a reading, as they have much lower failure 
rates than standard TE probes.27 However, it is unclear how 
accurate these readings are with increased adipose tissue sepa-
rating the transducer probe from the liver. In our study, we also 
demonstrated that an ROI depth greater than 4 cm can impact 
accuracy, which would be the case for many patients with obe-
sity, further highlighting this concern. Our study was limited in 
that we were unable to use an obese pig model. In our partic-
ular porcine model with a thin abdominal wall, there were no 
differences in the accuracy between transabdominal SWE and 
EUS-SWE. However, we predicted that transabdominal SWE 
readings would become less accurate with increasing abdomi-
nal wall thickness. 

Another theoretical advantage of EUS-SWE is its flexibility in 
adjusting the ROI size. This can be important when evaluating 
smaller lesions of interest, where an ROI size of 0.5×1.0 cm can 
fit within a lesion in EUS-SWE, while an ROI size of 1.5×1.0 cm 
would not in transabdominal SWE. In this study, we demon-
strated that if the ROI could not completely fit within the lesion, 
the accuracy is significantly diminished, despite similar VsN 
readings. Therefore, transabdominal SWE is not a great tool 
for evaluating lesions unless the lesions are fairly large, whereas 
EUS-SWE offers more flexibility and a higher range of clinical 
utility when evaluating small lesions. 

In our study, we measured the accuracy using a surrogate 
measurement of percentage deviation from the reference stiff-
ness value. We used this particular variable, as it allowed for 
fairer comparisons among various reference values (e.g., a 0.5-
kPa difference has a greater value to a 2.0-kPa reference model 
than to a 37.0-kPa reference model). We also used the absolute 
value of percentage deviation, which does not infer direction, 
but rather the magnitude of distance from the true value. The 
reduced emphasis on direction has its advantages as a closer 
surrogate for accuracy. Directionality (e.g., whether a measure-
ment is above or below the reference value) can be informative 
for device calibration purposes; however, this was not the intent 
of the study. 

In terms of the clinical applicability of EUS-SWE, with an 
optimized ROI size of 1.5 cm and depth of 1–2 cm, the accura-
cy can be as high as only a 5% deviation from the actual value. 
This correlates to a 0.35-kPa difference for a true value of 7 kPa. 
For liver applications, this is around the F2 cutoff value of 7.29 
kPa for non-alcoholic fatty liver disease.28 Even with a 10% devi-

Fig. 6. Accuracy of endoscopic ultrasound (EUS)-shear wave elas-
tography in assessing smaller lesions of interest. t-test comparison 
between the region of interest (ROI) centered entirely within a lesion 
(bottom right ultrasound image) and ROI that included tissue out-
side the periphery of the lesion (top right ultrasound image). Signifi-
cant differences (p<0.05) were observed.
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ation, a 0.7-kPa average difference would be fairly accurate and 
clinically applicable in distinguishing, for example, F2 fibrosis 
from F1 or F3 fibrosis. However, a percentage deviation higher 
than 10% could lead to miscategorization; hence, optimization 
and standardization of the EUS-SWE technique are essential for 
future studies of this novel technology. 

Finally, variability among the operators was not an issue for 
the smaller stiffness values of 2.0 and 7.3 kPa, but was present 
for the stiffer reference values of 19.2 and 37.0 kPa. For the as-
sessment of liver fibrosis, although there is minimal variability 
among operators across the entire range of stiffness values, the 
concern regarding variability is somewhat allayed by the fact 
that variability is more pronounced in the cirrhosis range and 
less so in the lower fibrosis stages and is thus less clinically rele-
vant. 

Our study has several limitations. First, as mentioned previ-
ously, we did not use an obese porcine model. Second, we did 
not have reference models between the values of 7.3 and 19.2 
kPa, which encompass a large range of fibrosis staging between 
F2 and F4 for liver applications. However, it could be argued 
that since the stiffness values of 7.3 and 19.2 kPa performed 
similarly in accuracy, stiffness values in between should yield 
similar findings. Third, our outcome measure of pressure exert-
ed on the transducer was based on a subjective grading scale of 
light, medium, and heavy that was standardized to not interfere 
with the ultrasound image quality. Heavier pressures that could 
“indent” the parenchyma and thus change the image quality 
were not evaluated in this study. Finally, owing to the wide 
range of measurements we performed in both the benchtop and 
animal models, the number of measurements for each variation 
was limited owing to time constraints of the research staff. As 
such, the significance of some of the comparisons might not 
have been demonstrated because of the low power.  

Nevertheless, our study also had several strengths. First, to 
reiterate, this is the first study of its kind to evaluate EUS-SWE 
in a highly rigorous manner, and it was performed in both con-
trolled benchtop and animal studies with standardized models. 
Second, the findings can be immediately applied to current 
clinical practice and aid in the methodology of future human 
clinical trials, especially in liver fibrosis staging and malignant 
lesion evaluation. Third, we demonstrated and quantified spe-
cific scenarios (e.g., obesity and evaluation of lesions) in which 
EUS-SWE may be superior to existing transabdominal elastog-
raphy modalities and hence pave a way for broader applicability 
of elastography technology in the diagnosis of gastrointestinal 

diseases. 
In conclusion, our study results suggest the following pa-

rameters for the optimal technique for EUS-SWE: an optimal 
viewing window with an ROI size of 1 to 1.5 cm and depth of 
less than 2 cm. The orientation of and pressure exerted on the 
transducer do not seem to affect the accuracy. For transabdom-
inal SWE, an ROI depth of 2 to 4 cm is the optimal viewing 
window, although this can be difficult to achieve clinically in 
patients with obesity. SWE is not optimized to evaluate smaller 
lesions of interest unless the entire ROI can be situated within 
the lesion, which may be more favorable for EUS-SWE because 
the ROI size can be adjusted. We did not find differences in the 
accuracy between the two imaging modalities, and any variabil-
ity among the operators was more pertinent to the measure-
ments in the higher stiffness value range. Reliability was lower 
with transabdominal SWE across varying stiffness values, but 
which did not significantly affect the accuracy. For liver assess-
ment, this higher stiffness value range correlates with values as-
sociated with cirrhosis (F4) and is thus less clinically impactful. 
The results of this study will hopefully be helpful in ensuring 
optimal data collection for future larger-scale human studies 
using EUS-SWE and transabdominal SWE. 
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