• Title/Summary/Keyword: Imaging optical system

Search Result 588, Processing Time 0.037 seconds

Measurement of the Modulation Transfer Function of Infrared Imaging System by Modified Slant Edge Method

  • Li, Hang;Yan, Changxiang;Shao, Jianbing
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.381-388
    • /
    • 2016
  • The performance of a staring infrared imaging system can be characterized based on estimating the modulation transfer function (MTF). The slant edge method is a widely used MTF estimation method, which can effectively solve the aliasing problem caused by the discrete undersampling of the infrared focal plane array. However, the traditional slant edge method has some limitations such as the low precision of the edge angle extraction and using the approximate function to fit the edge spread function (ESF), which affects the accuracy of the MTF estimation. In this paper, we propose a modified slant edge method, including an edge angle extraction method that can improve the precision of the edge angle extraction and an ESF fitting algorithm which is based on the transfer function model of the imaging system, to enhance the accuracy of the MTF estimation. This modified slant edge method presents higher estimation accuracy and better immunity to noise and edge angle than other traditional methods, which is demonstrated by the simulation and application experiments operated in our study.

Multiple-image Encryption and Multiplexing Using a Modified Gerchberg-Saxton Algorithm in Fresnel-transform Domain and Computational Ghost Imaging

  • Peiming Zhang;Yahui Su;Yiqiang Zhang;Leihong Zhang;Runchu Xu;Kaimin Wang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.362-377
    • /
    • 2023
  • Optical information processing technology is characterized by high speed and parallelism, and the light features short wavelength and large information capacity; At the same time, it has various attributes including amplitude, phase, wavelength and polarization, and is a carrier of multi-dimensional information. Therefore, optical encryption is of great significance in the field of information security transmission, and is widely used in the field of image encryption. For multi-image encryption, this paper proposes a multi-image encryption algorithm based on a modified Gerchberg-Saxton algorithm (MGSA) in the Fresnel-transform domain and computational ghost imaging. First, MGSA is used to realize "one code, one key"; Second, phase function superposition and normalization are used to reduce the amount of ciphertext transmission; Finally, computational ghost imaging is used to improve the security of the whole encryption system. This method can encrypt multiple images simultaneously with high efficiency, simple calculation, safety and reliability, and less data transmission. The encryption effect of the method is evaluated by using correlation coefficient and structural similarity, and the effectiveness and security of the method are verified by simulation experiments.

Optical Biopsy of Peripheral Nerve Using Confocal Laser Endomicroscopy: A New Tool for Nerve Surgeons?

  • Crowe, Christopher S;Liao, Joseph C;Curtin, Catherine M
    • Archives of Plastic Surgery
    • /
    • v.42 no.5
    • /
    • pp.626-629
    • /
    • 2015
  • Peripheral nerve injuries remain a challenge for reconstructive surgeons with many patients obtaining suboptimal results. Understanding the level of injury is imperative for successful repair. Current methods for distinguishing healthy from damaged nerve are time consuming and possess limited efficacy. Confocal laser endomicroscopy (CLE) is an emerging optical biopsy technology that enables dynamic, high resolution, sub-surface imaging of live tissue. Porcine sciatic nerve was either left undamaged or briefly clamped to simulate injury. Diluted fluorescein was applied topically to the nerve. CLE imaging was performed by direct contact of the probe with nerve tissue. Images representative of both damaged and undamaged nerve fibers were collected and compared to routine H&E histology. Optical biopsy of undamaged nerve revealed bands of longitudinal nerve fibers, distinct from surrounding adipose and connective tissue. When damaged, these bands appear truncated and terminate in blebs of opacity. H&E staining revealed similar features in damaged nerve fibers. These results prompt development of a protocol for imaging peripheral nerves intraoperatively. To this end, improving surgeons' ability to understand the level of injury through real-time imaging will allow for faster and more informed operative decisions than the current standard permits.

Simplified Integral Imaging Pickup Method for Real Objects Using a Depth Camera

  • Li, Gang;Kwon, Ki-Chul;Shin, Gwan-Ho;Jeong, Ji-Seong;Yoo, Kwan-Hee;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.381-385
    • /
    • 2012
  • In this paper, we present a novel integral imaging pickup method. We extract each pixel's actual depth data from a real object's surface using a depth camera, then generate elemental images based on the depth map. Since the proposed method generates elemental images without a lens array, it has simplified the pickup process and overcome some disadvantages caused by a conventional optical pickup process using a lens array. As a result, we can display a three-dimensional (3D) image in integral imaging. To show the usefulness of the proposed method, an experiment is presented. Though the pickup process has been simplified in the proposed method, the experimental results reveal that it can also display a full motion parallax image the same as the image reconstructed by the conventional method. In addition, if we improve calculation speed, it will be useful in a real-time integral imaging display system.

Amplitude impulse and superresolution of interferometric imaging system obtained by superposing three Gauss pupils (세개의 Gauss 동을 중첩한 간섭계형 결상계의 진폭임펄스와 초분해능)

  • 송영란;이민희;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The amplitude impulse S(x) of an interferometric optical imaging system for λ=193 nm(ArF laser) and NA=0.5 is derived for the pupil with superposed three Gauss pupils $A_1$($\omega$), $A_{2-}$($\omega$) and $A_{2+}$($\omega$). It is shown that FWHM of S(x) can be far less than the Rayleigh's criterion of resolution $\frac{1}{2}{\epsilon}_R$, where ${\epsilon}_R$ is equal to λ=193 nm in the present case of NA=0.5. The three Gauss pupils are provided in an optical system which consists of a Twyman-Green interferometer and an imaging system. The system is proposed and relevent optical components are discussed. Siloxane polymer is suggested for fabrications of amplitude modulation plates. In the present work, we assumed the system is free from aberration and linear. The case that the system has residual aberrations is important, and further work is necessary.

  • PDF

Statistical Analysis of Focus Adjustment Method for a Floating Imaging System with Symmetric Error Factors (대칭형 공차를 갖는 플로팅 광학계의 상면 변화 보정 방법에 대한 통계적 해석)

  • Ryu, Jae Myung;Kim, Yong Su;Jo, Jae Heung;Kang, Geon Mo;Lee, Hae Jin;Lee, Hyuck Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.189-196
    • /
    • 2012
  • A floating optical system is a system that moves more than 2 groups to focus at the camera lens. At the camera optics, the floating system that is mainly used is an optical system such as a macro lens which changes magnification very much. When the floating system is assembled and fabricated in the factory, there are differences between the image plane of the sensor and the focal plane of the infinity or macro state. Therefore, in a considerable proportion of cases, the focus adjustment to minimize the difference of BWD(Back Working Distance) is carried out in the process of manufacturing. In this paper, in order to decide the movement of each group in a floating system, we evaluated the rotation angle of CAM for the focus adjustment. We know that the maximum magnification of macro state is corrected by this numerical method for the focus adjustment, too. We investigated the limit of CAM rotation angle of the system by using statistical analysis for CAM rotation angle, which uses the focus adjustment of the floating system with symmetric error factors.

Development of Event-based Object Tracking System (이벤트 기반 물체 추적 시스템 개발)

  • Kim, Sang-Jun;Lee, Hyunkyung;Lee, Seung Ah;Kim, Dae-Yeon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.179-181
    • /
    • 2022
  • 동적 비전 센서(Dynamic Vision Sensor)라고도 알려진 이벤트 카메라는 생체에서 영감을 받은 새로운 시각 센서이다. 고정된 속도로 이미지를 생성하는 기존 카메라와 달리 이벤트 기반 카메라의 픽셀은 독립적이고 비동기적으로 작동한다. 기존 프레임 기반 카메라보다 이벤트 기반 카메라가 움직임을 포착하는데 더 적합하며 모션 블러(Motion Blur)가 없고 시간 해상도가 높다는 이점을 통해 고속카메라로 활용할 수 있다. 본 논문은 이벤트 카메라의 높은 시간 해상도와 동적 범위, 낮은 지연시간, 전력 소비량의 이점을 활용하여 움직이는 물체를 모션 블러 없이 포착하는 이벤트 기반 물체 추적 시스템을 제안한다. 실험을 통해 전체 영상을 포착하는 기존 프레임 기반 카메라에 비해 밝기 변화에 따른 동적 변화만을 추적하는 이벤트 기반 카메라는 모션 블러가 없다는 점을 검증하였다.

  • PDF

A Study on the Development of the System for Inspecting Cracks in the Inner Wall for Structures (구조물 내벽의 균열 검사를 위한 시스템 개발에 관한 연구)

  • 이상호;신동익;손영갑;이강문;마상준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.480-483
    • /
    • 1997
  • In this paper, we have proposed an automatic inspection system for cracks on the surface of a structure. The proposed system consists of the imaging system and the veh~cle system. The imaging system. a set of optical sensor, lens, illuminator, storage and their configuration, images the scene and store it on the hard disk. We adopted a linescan camera of 5000 pixel density to achieve high resolution without loss of simplicity. The vehicle system that moves the optical system IS ~mplemented by an AGV. The AGV moves forward at constant velocity and avoid obstacles to acquire a stable image. We have cmplemented an experimental system and have acquired images of the wall of hallway. The image is of 0.1-mmipixel resolution and the scanning time IS about 1 mlsec. The allow able scan.

  • PDF