• Title/Summary/Keyword: Imaginary part

Search Result 113, Processing Time 0.12 seconds

19세기 기하학에서의 ‘허’이론

  • 한경혜
    • Journal for History of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.15-32
    • /
    • 2002
  • The first part of this thesis gives some brief explanation of the theory and history of imaginary elements in analytic geometry in the 19th century. The second part of this thesis discusses the theory of imaginary elements of synthetic geometry in the first half of the 19th century. Then the next part mentions the theory of imaginary elements of geometry in the second half of that same century. Particularly Christian von Staudt's and Felix Klein's theories are handled in this part. Von Staudt, who has completed the system of the synthetic projective geometry, used ‘involution’ in order to introduce a new concept ‘imaginary elements’- imaginary points, imaginary lines and imaginary plane-in synthetic geometry. Klein applied von Staudt's theory as he convey the result of the research in algebraic geometry in a picture. Von Staudt's and Klein's research may be regarded as the top of the effort to investigate possible relationship between real and imaginary structures.

  • PDF

Time-series 방법으로 모델링한 절삭역학에 의한 공구마모감시 방법

  • 권원태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.97-101
    • /
    • 1993
  • In this work, the imaginary part of the inner modulation transfer function of the cutting dynamics is introduced for tool wear monitoring. Time-series method is utilized to construct the generalthree dimensional cutting dynamics whose imaginary part of the inner modulation transfer funcition shows the proportionality to tool wear at the natural frequency of the machine tool dynamics. This modelis reduced to single-input single- output model without altering the proporitonality characteristics to tool wear and implemented to the dual computer system in which one computer performs measurement while the other calculates the imaginary part of the inner modulation transfer function of th cutting dynamics by the batchleast square method. The values of the imaginary part at the natural frequencyof the machine tool structure in the cutting direction are compared to the one calculated during machining with a brand new tool to decide the current stants of the tool. The experiments shows the relevance of the proposed concept.

Tool Wear Monitoring Scheme by Modeling of the Cutting Dynamics by Time-series Method (Time-series 방법으로 모델링한 절삭역학에 의한 공구마모감시방법)

  • Kwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.94-103
    • /
    • 1993
  • In this work, the imaginary part of the inner modulation transfer function of the cutting dynamics is introduced for tool wear monitoring. Time-series method is utilized to construct the general three dimensional cutting dynamics whose imaginary part of the inner modulation transfer funcition shows the proportionality to tool wear at the natural frequency of the machine tool dynamics. Thus model is reduced to single-input single-output model without altering the proportionality characteristics to tool wear and implemented to the dual computer system in which one computer performs measurement while the other calculates the imaginary part of the inner modulation transfer function of the cutting dynamics by the batch least square method. The values of the imaginary part at the natural requency of the machine tool structure in the cutting direction are compared to the one calculated during machining with a brand new tool to decide the current status of the tool. The experiments shows the relevance of the proposed concept.

  • PDF

Behavior of Ferrite-Ferrite composite on Electromagnetic Wave Absorber (페라이트-페라이트 복합형 전파흡수체의 거동)

  • 김경용;김왕섭;강선모;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.556-560
    • /
    • 1991
  • The behavior of Ni-Zn ferrite/Mn-Zn ferrite composite electromagnetic absorber was investigated. The imaginary part of complex permeability of the composite was higher than that of either ferrite alone at all frequency range (50∼1400MHz) studied. The difference, which was pronounced in low frequency range, was reached the maximum value when the composite consisted of constituent ferrites with equal amount. Since the thickness in inversely proportional to the imaginary part of complex permeability for the ferrite absorber, it was possible to reduce the thickness of electromagnetic absorber by employing a composite of two different ferrites.

  • PDF

The Extrinsic Characteristics of the Imaginary Friend in the Picture Books (그림책에 나타난 상상친구의 외적 특성)

  • Park, Hyun-Kyung;Bong, Jin-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.2
    • /
    • pp.265-276
    • /
    • 2020
  • This research is to study about the extrinsic characteristics of imaginary friends in the picture books which are published in Korea and its publishing trend. At first, the pioneering country which is publishing picture books telling about the imaginary friend belongs to the western countries, and some part of them are printed in Japan and Korea among east asia, and its story is most likely fiction, since 2000, the picture books about the imaginary friends have been steadily published. Secondly, its extrinsic characteristics among them are the gender, name of the main character and his/her imaginary friends, and whether the imaginary friend present themselves, their physical types, and the numbers of imaginary friends in the picture books. The percentage of gender between man and woman who is more likely to have the imaginary friends in the picture books are higher to girls than boys, and their imaginary friends are to be called by the intimate or unique name rather than the its general name and/or the name reflected by it appearance, and the imaginary friend are only visible to the main character, and its type are widely ranged from animal, human, and others in frequent order, and the main character tend to have only one imgainary friend rather than to have multiple ones.

Computation of dynamic stiffness and flexibility for arbitrarily shaped two-dimensional membranes

  • Chen, J.T.;Chung, I.L.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.437-453
    • /
    • 2002
  • In this paper, dynamic stiffness and flexibility for circular membranes are analytically derived using an efficient mixed-part dual boundary element method (BEM). We employ three approaches, the complex-valued BEM, the real-part and imaginary-part BEM, to determine the dynamic stiffness and flexibility. In the analytical formulation, the continuous system for a circular membrane is transformed into a discrete system with a circulant matrix. Based on the properties of the circulant, the analytical solutions for the dynamic stiffness and flexibility are derived. In deriving the stiffness and flexibility, the spurious resonance is cancelled out. Numerical aspects are discussed and emphasized. The problem of numerical instability due to division by zero is avoided by choosing additional constraints from the information of real and imaginary parts in the dual formulation. For the overdetermined system, the least squares method is considered to determine the dynamic stiffness and flexibility. A general purpose program has been developed to test several examples including circular and square cases.

The Performance of Dual Structure CR-CMA Adaptive Equalizer for 16-QAM Signal (16-QAM 신호에 대한 이중 구조 CR-CMA 적응 등화기의 성능)

  • Yoon, Jae-Sun;Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.107-114
    • /
    • 2012
  • In this paper, the concerned existing blind equalizer convergence rate and residual inter-symbol interference using constellation reduced and cost function by separation the real part and an imaginary part, the dual structure CR-CMA(constellation Reduction CMA). The CMA methed compensates amplitude but does no compensate phase, On the other hand, The CMA method compensates both the amplitude and the phase but it has the convergence rate problem, and the MCMA method is a way to solve the phase problem of CMA method compensates both the amplitude and the phase after respectively calculating the real part and imaginary part components. Proposal a new method that the dual structure of CR-CMA, the cost function and error function and respectively calculating the real part and imaginary part components can advantages by improving the CMA and the MCMA algorithms so that the amplitude and phase retrieval and constellation reduce the residual ISI and faster convergence rate and performance is good SER (Symbol Error Ratio) was confirmed by computer simulations.

Analysis of Electrical Characteristics for Single Crystalline and Poly-crystalline Solar Cell (단결정, 다결정 실리콘 태양전지의 전기적 특성 분석)

  • Hong, Chang-Woo;Choi, Yong-Sung;Lee, Kyung-Sup;Cho, Soo-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.744-749
    • /
    • 2011
  • Recently, annual usage of energy is dramatically increasing because industrialization is going faster and more electricity is needed due to various electronic devices. This study focused on the performance characteristics of solar cell using the impedance technique. The experiment measured an impedance according to frequency's from 2 mHz until 1 MHz. It could know that the impedance was decreased according to the frequency increases in solar cell. The imaginary part was changed from capacitance component to inductance component.

Flutter analysis of long-span bridges using ANSYS

  • Hua, X.G.;Chen, Z.Q.;Ni, Y.Q.;Ko, J.M.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.61-82
    • /
    • 2007
  • This paper presents a novel finite element (FE) model for analyzing coupled flutter of long-span bridges using the commercial FE package ANSYS. This model utilizes a specific user-defined element Matrix27 in ANSYS to model the aeroelastic forces acting on the bridge, wherein the stiffness and damping matrices are expressed in terms of the reduced wind velocity and flutter derivatives. Making use of this FE model, damped complex eigenvalue analysis is carried out to determine the complex eigenvalues, of which the real part is the logarithm decay rate and the imaginary part is the damped vibration frequency. The condition for onset of flutter instability becomes that, at a certain wind velocity, the structural system incorporating fictitious Matrix27 elements has a complex eigenvalue with zero or near-zero real part, with the imaginary part of this eigenvalue being the flutter frequency. Case studies are provided to validate the developed procedure as well as to demonstrate the flutter analysis of cable-supported bridges using ANSYS. The proposed method enables the bridge designers and engineering practitioners to analyze flutter instability by using the commercial FE package ANSYS.