• Title/Summary/Keyword: Imaginary Number

Search Result 94, Processing Time 0.025 seconds

Discrete Event Simulation and Its Application to Railway Maintenance Evaluation System (철도차량 유지보수 장비의 Discrete Event Simulation 기반 기초 성능평가 및 적용방안 연구)

  • Mun Hyeong-Seok;Jang Chang-Du;Ha Yun-Seok;Jo Yeong-Cheon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.331-336
    • /
    • 2005
  • A lot of manufacturing knowledge and method have applied to increase manufacturing efficiency in industry field. DES(Discrete Event Simulation) is one of solution to deal with manufacturing problems in factory. Beginning of research, old maintenance system of KNR ( Korea National Railroad) and its technical problems are basically investigated. KNR has maintained railway vehicle with their own solution based on experience. Very advanced railway vehicles such as KTX (Korea Train Express) and TTX(Tilting Train Express) will be difficult to maintain with their old maintenance method. In order to apply knowledge of DES, maintenance field of railway must be considered. Imaginary maintenance machine are selected to variable of DES. Maintenance capability of each machine will be evaluated base on imaginary data from imaginary machine. The machine could be very expensive as well as difficult to replace. Target of research is minimization of number of machine in railway workshop. So basic knowledge of discrete event simulation is introduced. Then five essential stages of discrete event simulation are provided. Each maintenance case defined as event. Each event is discrete and simulated base on different case such as one maintenance line with one machine and one maintenance line with two machines in railway workshop. simple maintenance method, discrete event simulation, will be come out very powerful in complicate maintenance system and will be helpful to reduce maintenance cost as well as maintenance labor.

  • PDF

FORMULAS OF GALOIS ACTIONS OF SOME CLASS INVARIANTS OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 1(mod 12)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.799-814
    • /
    • 2009
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of some class invariants from the generalized Weber functions $\mathfrak{g}_0,\mathfrak{g}_1,\mathfrak{g}_2$ and $\mathfrak{g}_3$ over quadratic number fields with discriminant $D{\equiv}1$ (mod 12).

  • PDF

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ 21 (mod 36)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.921-925
    • /
    • 2011
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}21$ (mod 36).

GALOIS ACTIONS OF A CLASS INVARIANT OVER QUADRATIC NUMBER FIELDS WITH DISCRIMINANT D ≡ -3 (mod 36)

  • Jeon, Daeyeol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.853-860
    • /
    • 2010
  • A class invariant is the value of a modular function that generates a ring class field of an imaginary quadratic number field such as the singular moduli of level 1. In this paper, using Shimura Reciprocity Law, we compute the Galois actions of a class invariant from a generalized Weber function $g_2$ over quadratic number fields with discriminant $D{\equiv}-3$ (mod 36).

Depth Measurement of Materials Attached to Cylinder Using Line Laser (라인 레이저를 이용한 원통 부착물의 심도 측정)

  • Kim, Yongha;Ko, Kwangjin;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.225-233
    • /
    • 2017
  • Line-laser beams are used for accurate measurement of 3D shape, which is robust to external illumination. For depth measurement, we project a line-laser beam across an object from the face and take an image of the beam on the object surface using a CCD camera at some angle with respect to the face. For shape measurement, we project parallel line-laser beams with narrow line to line distance. When a layer of thin materials attached to a cylinder is long narrow along its circumference, we can measure the shape of the layer with a small number of parallel line beams if we project line beams along the circumference of the cylinder. Measurement of the depth of the attached materials on a line-laser beam is based on the number of pixels between an imaginary line along the imaginary cylinder without the attached materials and the beam line along the materials attached to the cylinder. For this we need to localize the imaginary line in the captured image. In this paper, we model the shape of the line as an ellipse and localize the line with least square estimate. The proposed method results in smaller error (maximum 0.24mm) than a popular 3D depth camera (maximum 1mm).

Ellipse-Stacking Methods for Image Reconstruction in Compton Cameras (컴프턴 카메라 영상재구성을 위한 타원 누적법)

  • Lee, Mi-No;Lee, Soo-Jin;Kim, Soo-Mee;Lee, Jae-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.520-529
    • /
    • 2007
  • An efficient method for implementing image reconstruction algorithms for Compton cameras is presented. Since Compton scattering formula establishes a cone surface from which the incident photon must have originated, it is crucial to implement a computationally efficient cone-surface integration method for image reconstruction. In this paper we assume that a cone is made up of a series of ellipses (or circles) stacked up one on top of the other. In order to reduce computational burden for tracing ellipses formed by the intersection of a cone and an image plane, we propose a new method using a series of imaginary planes perpendicular to the cone axis so that each plane contains a circle, not an ellipse. In this case the cone surface integral can be performed by simply accumulating the circles along the cone axis. To reduce the computational cost of tracing circles, only one of the circles in the cone is traced and the rest are determined by using simple trigonometric ratios. For our experiments, we used the three different schemes for tracing ellipses; (i) using the samples generated by the ellipse equation, (ii) using the fixed number of samples along a circle on the imaginary plane, and (iii) using the fixed sampling interval along a circle on the imaginary plane. We then compared performance of the above three methods by applying them to the two reconstruction algorithms - the simple back-projection method and the expectation-maximization algorithm. The experimental results demonstrate that our proposed methods (ii) and (iii) using imaginary planes significantly improve reconstruction accuracy as well as computational efficiency.

ALGEBRAIC NUMBERS, TRANSCENDENTAL NUMBERS AND ELLIPTIC CURVES DERIVED FROM INFINITE PRODUCTS

  • Kim, Dae-Yeoul;Koo, Ja-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.977-998
    • /
    • 2003
  • Let k be an imaginary quadratic field, η the complex upper half plane, and let $\tau$ $\in$ η $textsc{k}$, p = $e^{{\pi}i{\tau}}$. In this article, using the infinite product formulas for g2 and g3, we prove that values of certain infinite products are transcendental whenever $\tau$ are imaginary quadratic. And we derive analogous results of Berndt-Chan-Zhang ([4]). Also we find the values of (equation omitted) when we know j($\tau$). And we construct an elliptic curve E : $y^2$ = $x^3$ + 3 $x^2$ + {3-(j/256)}x + 1 with j = j($\tau$) $\neq$ 0 and P = (equation omitted) $\in$ E.