• 제목/요약/키워드: Image reconstruction techniques

검색결과 159건 처리시간 0.029초

Image Reconstruction Techniques for Radioactive Waste Assay by Tomographic Gamma Scanning Method

  • Zhang Quanhu;Kim Ki-Hong;Hong Kwon-Pyo
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.126-140
    • /
    • 2005
  • The tomographic gamma scanner (TGS) method, a further of extension of segmented gamma scanner (SGS), is most accurate and precise for assaying heterogeneous drummed nuclear radioactive waste; it is widely used in nuclear power plants and radioactive waste storages and disposal sites. The transmission and emission images are reconstructed by image reconstruction techniques. In the paper, the principle of TGS is introduced; image reconstruction techniques are discussed as well; finally, it is demonstrated that TGS method performance.

  • PDF

3-D Image Reconstruction Techniques for Plant and Animal Morphological Analysis - A Review

  • Rahman, Anisur;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제42권4호
    • /
    • pp.339-349
    • /
    • 2017
  • Purpose: This review focuses on the major 3-D image reconstruction techniques and their applications in plant and animal morphological analysis. Methods & Results: This paper begins with an overview of major 3-D image reconstruction techniques and their basic principles. Subsequently, their applications in plant and animal morphological analysis are reviewed. A discussion on the limitations and future research direction of 3-D imaging techniques for accurate, fast measurements and modeling of plant and animal morphological analysis follows. Conclusions: Owing to the increasing demand for plant and animal morphological analysis, the application of 3-D imaging techniques will increase in popularity among researchers and the agricultural industry.

특이값분해 기반 동적의료영상 재구성기법의 특징 파악을 위한 시뮬레이션 연구 (Simulation Study for Feature Identification of Dynamic Medical Image Reconstruction Technique Based on Singular Value Decomposition)

  • 김도휘;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권2호
    • /
    • pp.119-130
    • /
    • 2019
  • Positron emission tomography (PET) is widely used imaging modality for effective and accurate functional testing and medical diagnosis using radioactive isotopes. However, PET has difficulties in acquiring images with high image quality due to constraints such as the amount of radioactive isotopes injected into the patient, the detection time, the characteristics of the detector, and the patient's motion. In order to overcome this problem, we have succeeded to improve the image quality by using the dynamic image reconstruction method based on singular value decomposition. However, there is still some question about the characteristics of the proposed technique. In this study, the characteristics of reconstruction method based on singular value decomposition was estimated over computational simulation. As a result, we confirmed that the singular value decomposition based reconstruction technique distinguishes the images well when the signal - to - noise ratio of the input image is more than 20 decibels and the feature vector angle is more than 60 degrees. In addition, the proposed methode to estimate the characteristics of reconstruction technique can be applied to other spatio-temporal feature based dynamic image reconstruction techniques. The deduced conclusion of this study can be useful guideline to apply medical image into SVD based dynamic image reconstruction technique to improve the accuracy of medical diagnosis.

Research on Reconstruction Technology of Biofilm Surface Based on Image Stacking

  • Zhao, Yuyang;Tao, Xueheng;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제24권11호
    • /
    • pp.1472-1480
    • /
    • 2021
  • Image stacking technique is one of the key techniques for complex surface reconstruction. The process includes sample collection, image processing, algorithm editing, surface reconstruction, and finally reaching reliable conclusions. Since this experiment is based on laser scanning confocal microscope to collect the original contour information of the sample, it is necessary to briefly introduce the relevant principle and operation method of laser scanning confocal microscope. After that, the original image is collected and processed, and the data is expanded by interpolation method. Meanwhile, several methods of surface reconstruction are listed. After comparing the advantages and disadvantages of each method, one-dimensional interpolation and volume rendering are finally used to reconstruct the 3D model. The experimental results show that the final 3d surface modeling is more consistent with the appearance information of the original samples. At the same time, the algorithm is simple and easy to understand, strong operability, and can meet the requirements of surface reconstruction of different types of samples.

PC 기반의 3차원 의료영상 재구성 시스템의 고속화 설계 (Speed Optimization Design of 3D Medical Image Reconstruction System Based on PC)

  • 배수현;김선호;유선국
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권2호
    • /
    • pp.189-198
    • /
    • 1998
  • 3차원 의료영상 재구성 기법은 2차원 의료영상으로부터 인체의 복잡한 3차원 구조를 이해하는데 많은 도움을 준다. 본 논문에서 구현한 3차원 의료영상 재구성 시스템은 저가의 PC 기반에서 시스템의 환경에 상관없이 사용될 수 있도록 Visual C++4.2를 이용하여 작성하였으며 향후 확장성을 고려하여 각 기능을 모듈화 시켰다. 모듈 설계된 3차원 의료영상 재구성 시스템은 데이터 준비, 그래디언트 근시화, 분할, 음영처리, 좌표시스템 변환, 그리고 광선투사와 합성 모듈로 구성되었다. 본 논문에서는 3차원 의료영상 재구성 방법의 속도문제를 개선하여 저가의 PC 환경에서 구현하였다. PC 환경에서 3차원 의료영상 재구성 시스템을 구현하기 위하여 광선투사를 재구성되는 영상에 영향을 주지 않는 범위에서 조기 중단시키는 알고리듬과 영상 재구성에 참여하는 체적소를 줄이는 방법, 그리고 영상을 재구성하기 위한 광선투사 과정에서 투시되는 광선의 수를 줄이는 방법 등ㄹ을 적용하여 PC환경에서 3차원 의료영상 재구성 시스템의 고속화를 이루었으며 실험에 의해서 PC환경에서도 의료영상 재구성 알고리듬이 효과적으로 사용되었다.

  • PDF

CT Image Reconstruction of Wood Using Ultrasound Velocities II - Determination of the Initial Model Function of the SIRT Method -

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권5호통권133호
    • /
    • pp.29-37
    • /
    • 2005
  • A previous study verified that the SIRT (simultaneous iterative reconstruction technique) method is more efficient than the back-projection method as a CT algorithm for wood. However, it was expected that the determination of the initial model function of the SIRT method would influence the quality of CT image. Therefore, in this study, we intended to develop a technique that could be used to determine an adequate initial model function. For this purpose, we proposed several techniques, and for each technique we examined the effects of the initial model function on the average errors and the CT image at each iteration. Through this study, it was shown that the average error was decreased and the image quality was improved using the proposed techniques. This tendency was most pronounced when the back-projection method was used to determine the initial model function. From the results of this study, we drew the following conclusions: 1) The initial model function of the SIRT method should be determined with careful attention, and 2) the back-projection method efficiently determines the initial model function of the SIRT method.

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.

동영상에서의 내용기반 메쉬를 이용한 모션 예측 (Content Based Mesh Motion Estimation in Moving Pictures)

  • 김형진;이동규;이두수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.35-38
    • /
    • 2000
  • The method of Content-based Triangular Mesh Image representation in moving pictures makes better performance in prediction error ratio and visual efficiency than that of classical block matching. Specially if background and objects can be separated from image, the objects are designed by Irregular mesh. In this case this irregular mesh design has an advantage of increasing video coding efficiency. This paper presents the techniques of mesh generation, motion estimation using these mesh, uses image warping transform such as Affine transform for image reconstruction, and evaluates the content based mesh design through computer simulation.

  • PDF

의료영상 재구성의 속도개선에 관한 연구 (A Study on Speed Improvement of Medical Image Reconstruction)

  • 유종현;백승화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2489-2491
    • /
    • 1998
  • The study of 3D image reconstruction re has developed along the progress of computer. Therfore Great deal of research on it have been done. 3D medical image reconstruction techniques are useful to figure out human's complex 3D structures from the set of 2D section. But 3D medical image reconstruction require a lot of calculation, it takes long time and expensive system. That gives a reason to the improvement of study on speed. In this paper. applying the interpolation to only the part which can appear as cube, I come up with a method that calculates the speed by reducing the a mount of calculation.

  • PDF

MDCT에서 선량 변화에 따른 딥러닝 재구성 기법의 유용성 연구 (A Study on the Usefulness of Deep Learning Image Reconstruction with Radiation Dose Variation in MDCT)

  • 김가현;김지수;김찬들;이준표;홍주완;한동균
    • 한국방사선학회논문지
    • /
    • 제17권1호
    • /
    • pp.37-46
    • /
    • 2023
  • MDCT의 딥러닝 재구성 기법(TrueFidelity, TF)의 유용성을 평가하고자 기존의 필터보정역투영법(Filtered back projection, FBP)과 적응형 통계적 재구성 기법(Adaptive Statistical Iterative Reconstruction-Veo, ASIR-V)의 화질을 비교 평가하였다. FBP, ASIR-V 50%, TF-H의 재구성 기법에서 선량을 17.29 mGy로 고정한 것과 10.37 mGy, 12.10 mGy, 13.83 mGy, 15.56 mGy로 변화시킨 영상을 획득하여 노이즈, CNR, SSIM을 측정하였다. 17.29 mGy에서 재구성 기법 변화를 주었을 때 TF-H가 FBP, ASIR-V에 비해 화질이 우수하다. 선량에 변화를 주었을 때 10.37 mGy TF-H와 FBP 비교 시 노이즈, CNR, SSIM은 유의한 차이가 있고(p<0.05), 10.37 mGy TF-H와 ASIR-V 50% 비교 시 유의한 차이가 없다(p>0.05). 선량이 가장 높은 15.56 mGy ASIR-V 50%와 선량이 가장 낮은 10.37 mGy TF-H 화질이 동일하므로 TF-H는 30%의 선량 감소 효과가 있다. 따라서 딥러닝 재구성 기법(TF)은 반복적 재구성 기법(ASIR-V)과 필터보정역투영법(FBP)보다 선량을 감소시킬 수 있었다. 이로 인해 환자의 피폭선량을 감소시킬 것으로 사료된다.