DOI QR코드

DOI QR Code

3-D Image Reconstruction Techniques for Plant and Animal Morphological Analysis - A Review

  • Rahman, Anisur (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Mo, Changyeun (National Institute of Agricultural Science, Rural Development Administration) ;
  • Cho, Byoung-Kwan (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University)
  • Received : 2017.09.26
  • Accepted : 2017.11.27
  • Published : 2017.12.01

Abstract

Purpose: This review focuses on the major 3-D image reconstruction techniques and their applications in plant and animal morphological analysis. Methods & Results: This paper begins with an overview of major 3-D image reconstruction techniques and their basic principles. Subsequently, their applications in plant and animal morphological analysis are reviewed. A discussion on the limitations and future research direction of 3-D imaging techniques for accurate, fast measurements and modeling of plant and animal morphological analysis follows. Conclusions: Owing to the increasing demand for plant and animal morphological analysis, the application of 3-D imaging techniques will increase in popularity among researchers and the agricultural industry.

Keywords

References

  1. Andersen, H. J., L. Reng and K. Kirk. 2005. Geometric plant properties by relaxed stereo vision using simulated annealing. Computers and Electronics in Agriculture 49(2):219-232. https://doi.org/10.1016/j.compag.2005.02.015
  2. Andujar, D., A. Ribeiro, C. Fernandez-Quintanilla and J. Dorado. 2016. Using depth cameras to extract structural parameters to assess the growth state and yield of cauliflower crops. Computers and Electronics in Agriculture 122:67-73. https://doi.org/10.1016/j.compag.2016.01.018
  3. Barone, S., A. Paoli and A. Razionale. 2012. 3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework. Sensors 12(12):16785-16801. https://doi.org/10.3390/s121216785
  4. Biskup, B., H. Scharr, U. Schurr and U. Rascher. 2007. A stereo imaging system for measuring structural parameters of plant canopies. Plant, Cell & Environment 30(10):1299-1308. https://doi.org/10.1111/j.1365-3040.2007.01702.x
  5. Blais, F. 2004. Review of 20 years of range sensor development. Journal of Electronic Imaging 13(1):231. https://doi.org/10.1117/1.1631921
  6. Chaivivatrakul, S., L. Tang, M. N. Dailey and A. D. Nakarmi. 2014. Automatic morphological trait characterization for corn plants via 3D holographic reconstruction. Computers and Electronics in Agriculture 109:109-123. https://doi.org/10.1016/j.compag.2014.09.005
  7. Chiabrando, F., E. Donadio and F. Rinaudo. 2015. SfM for Orthophoto to Generation:A Winning Approach for Cultural Heritage Knowledge. In ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7:91-98.
  8. Dornbusch, T., S. Lorrain, D. Kuznetsov, A. Fortier, R. Liechti, I. Xenarios and C. Fankhauser. 2012. Measuring the diurnal pattern of leaf hyponasty and growth in Arabidopsis - a novel phenotyping approach using laser scanning. Functional Plant Biology 39(11):860. https://doi.org/10.1071/FP12018
  9. Fonstad, M. A., J. T. Dietrich, B. C. Courville, J. L. Jensen and P. E. Carbonneau. 2013. Topographic structure from motion:a new development in photogrammetric measurement. Earth Surface Processes and Landforms 38(4):421-430. https://doi.org/10.1002/esp.3366
  10. Golbach, F., G. Kootstra, S. Damjanovic, G. Otten and Rick van de Zedde. 2016. Validation of plant part measurements using a 3D reconstruction method suitable for high-throughput seedling phenotyping. Machine Vision and Applications 27(5):663-680. https://doi.org/10.1007/s00138-015-0727-5
  11. Hansard, M., S. Lee, O. Choi and R. Horaud. 2012. Time of Flight Cameras:Principles, Methods and Applications. SpringerBriefs in Computer Science (Vol. 95). London: Springer.
  12. Hosoi, F., K. Nakabayashi and K. Omasa. 2011. 3-D Modeling of Tomato Canopies Using a High-Resolution Portable Scanning Lidar for Extracting Structural Information. Sensors 11(12):2166-2174. https://doi.org/10.3390/s110202166
  13. Hu, P., Y. Guo, B. Li, J. Zhu and Y. Ma. 2015. Three-dimensional reconstruction and its precision evaluation of plant architecture based on multiple view stereo method. Transactions of the Chinese Society of Agricultural Engineering, 31(11):209-214.
  14. Ivanov, N., P. Boissard, M. Chapron and B. Andrieu. 1995. Computer stereo plotting for 3-D reconstruction of a maize canopy. Agricultural and Forest Meteorology 75(1-3):85-102. https://doi.org/10.1016/0168-1923(94)02204-W
  15. Jarvis, R. A. 1983. A Perspective on Range Finding Techniques for Computer Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-5(2):122-139.
  16. Jay, S., G. Rabatel, X. Hadoux, D. Moura and N. Gorretta. 2015. In-field crop row phenotyping from 3D modeling performed using Structure from Motion. Computers and Electronics in Agriculture 110:70-77. https://doi.org/10.1016/j.compag.2014.09.021
  17. Jin, J. and L. Tang. 2009. Corn plant sensing using real-time stereo vision. Journal of Field Robotics 26(6-7):591-608. https://doi.org/10.1002/rob.20293
  18. Ju, X., J. Paul Siebert, N. J. B. McFarlane, J. Wu, R. D. Tillett and C. Patrick Schofield. 2004. A stereo imaging system for the metric 3D recovery of porcine surface anatomy. Sensor Review 24(3):298-307. https://doi.org/10.1108/02602280410545948
  19. Kawasue, K., T. Ikeda, T. Tokunaga and H. Harada. 2013. Three-dimensional shape measurement system for black cattle using KINECT sensor. Journal of Circuits, Systems and Signal Process 4(7):222-230.
  20. Kawasue, K., K. D. Win, K. Yoshida and T. Tokunaga. 2017. Black cattle body shape and temperature measurement using thermography and KINECT sensor. Artificial Life and Robotics 22(4):1-7. https://doi.org/10.1007/s10015-016-0337-y
  21. Kuzuhara, Y., K. Kawamura, R. Yoshitoshi, T. Tamaki, S. Sugai, M. Ikegami and T. Yasuda. 2015. A preliminarily study for predicting body weight and milk properties in lactating Holstein cows using a three-dimensional camera system. Computers and Electronics in Agriculture 111:186-193. https://doi.org/10.1016/j.compag.2014.12.020
  22. Lati, R. N., S. Filin and H. Eizenberg. 2013. Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points. Precision Agriculture 14(6):586-605. https://doi.org/10.1007/s11119-013-9317-6
  23. Lazaros, N., G. C. Sirakoulis and A. Gasteratos. 2008. Review of Stereo Vision Algorithms: From Software to Hardware. International Journal of Optomechatronics 2(4):435-462. https://doi.org/10.1080/15599610802438680
  24. Lou, L., Y. Liu, J. Han and J. H. Doonan. 2014. Accurate Multi-View Stereo 3D Reconstruction for Cost-Effective Plant Phenotyping. In: Campilho A., Kamel M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science, vol 8815. London, Springer.
  25. McCarthy, C. L., N. H. Hancock and S. R. Raine. 2010. Applied machine vision of plants: a review with implications for field deployment in automated farming operations. Intelligent Service Robotics 3(4):209-217. https://doi.org/10.1007/s11370-010-0075-2
  26. Menesatti, P., C. Costa, F. Antonucci, R. Steri, F. Pallottino and G. Catillo. 2014. A low-cost stereovision system to estimate size and weight of live sheep. Computers and Electronics in Agriculture 103:33-38. https://doi.org/10.1016/j.compag.2014.01.018
  27. Miller, J., J. Morgenroth and C. Gomez. 2015. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban Forestry & Urban Greening 14(4):932-940. https://doi.org/10.1016/j.ufug.2015.09.001
  28. Muller-Linow, M., F. P.-Espinosa, H. Scharr and U. Rascher. 2015. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool. Plant Methods 11(1):11. https://doi.org/10.1186/s13007-015-0052-z
  29. Munaro, M., E. W. Y. So, S. Tonello and E. Menegatti. 2015. Efficient Completeness Inspection Using Real-Time 3D Color Reconstruction with a Dual-Laser Triangulation System. London, Springer.
  30. Nakarmi, A. D. and L. Tang. 2012. Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor. Computers and Electronics in Agriculture 82:23-31. https://doi.org/10.1016/j.compag.2011.12.011
  31. Pallottino, F., R. Steri, P. Menesatti, F. Antonucci, C. Costa, S. Figorilli and G. Catillo 2015. Comparison between manual and stereovision body traits measurements of Lipizzan horses. Computers and Electronics in Agriculture 118:408-413. https://doi.org/10.1016/j.compag.2015.09.019
  32. Pankaj, D. S., R. Nidamanuri and P. Prasad. 2013. 3-D Imaging Techniques and Review of Products. In Proc. of International Conference on Innovations in Computer Science and Engineering, 1-6.
  33. Paproki, A., X. Sirault, S. Berry, R. Furbank and J. Fripp. 2012. A novel mesh processing based technique for 3D plant analysis. BMC Plant Biology 12(1):63. https://doi.org/10.1186/1471-2229-12-63
  34. Paulus, S., J. Behmann, A-K. Mahlein, L. Plumer and H. Kuhlmann. 2014. Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping. Sensors 14(2):3001-18. https://doi.org/10.3390/s140203001
  35. Paulus, S., J. Dupuis, A. -K. Mahlein and H. Kuhlmann. 2013. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinformatics 14(1):238. https://doi.org/10.1186/1471-2105-14-238
  36. Paulus, S., J. Dupuis, S. Riedel and H. Kuhlmann. 2014. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping. Sensors 14(7):12670-12686. https://doi.org/10.3390/s140712670
  37. Paulus, S., H. Schumann, H. Kuhlmann and J. Leon. 2014. High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants. Biosystems Engineering 121:1-11.
  38. Rose, J., S. Paulus and H. Kuhlmann. 2015. Accuracy Analysis of a Multi-View Stereo Approach for Phenotyping of Tomato Plants at the Organ Level. Sensors 15(5):9651-9665. https://doi.org/10.3390/s150509651
  39. Rovira-Mas, F., Q. Zhang, M. Kise and J. F. Reid. 2006. Agricultural 3D Maps with Stereovision. In 2006 IEEE/ION Position, Location and Navigation Symposium, IEEE 1045-1053.
  40. Saeys, W., B. Lenaerts, G. Craessaerts and J. De Baerdemaeker. 2009. Estimation of the crop density of small grains using LiDAR sensors. Biosystems Engineering 102(1):22-30. https://doi.org/10.1016/j.biosystemseng.2008.10.003
  41. Sansoni, G., M. Trebeschi and F. Docchio. 2009. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine and Criminal Investigation. Sensors 9(1):568-601. https://doi.org/10.3390/s90100568
  42. Sarbolandi, H., D. Lefloch and A. Kolb. 2015. Kinect range sensing: Structured-light versus Time-of-Flight Kinect. Computer Vision and Image Understanding 139:1-20. https://doi.org/10.1016/j.cviu.2015.05.006
  43. Shi, C., G. Teng and Z. Li. 2016. An approach of pig weight estimation using binocular stereo system based on LabVIEW. Computers and Electronics in Agriculture 129:37-43. https://doi.org/10.1016/j.compag.2016.08.012
  44. van der Heijden, G., Y. Song, G. Horgan, G. Polder, A. Dieleman, M. Bink and C. Glasbey. 2012. SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Functional Plant Biology 39(11):870. https://doi.org/10.1071/FP12019
  45. Varga, M. and J. Jadlovsky. 2016. 3D imaging and image processing-literature review. In 16 Scientific Conference of Young Researchers, Herl'any, Slovakia: Faculty of Electrical Engineering and Informatics Technical University of Kosice, 12-15.
  46. Vazquez-Arellano, M., H. W. Griepentrog, D. Reiser and D. S. Paraforos. 2016. 3-D Imaging Systems for Agricultural Applications-A Review. Sensors 16(5).
  47. Wang, H., Y. Lin, Z. Wang, Y. Yao, Y. Zhang and L. Wu. 2017. Validation of a low-cost 2D laser scanner in development of a more-affordable mobile terrestrial proximal sensing system for 3D plant structure phenotyping in indoor environment. Computers and Electronics in Agriculture 140:180-189. https://doi.org/10.1016/j.compag.2017.06.002
  48. Wang, Q., S. Nuske, M. Bergerman and S. Singh. 2013. Automated Crop Yield Estimation for Apple Orchards. In Experimental Robotics, Springer, Heidelberg, 745-758.
  49. Weiss, U. and P. Biber. 2011. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robotics and Autonomous Systems 59(5):265-273. https://doi.org/10.1016/j.robot.2011.02.011
  50. Westoby, M. J., J. Brasington, N. F. Glasser, M. J. Hambrey and J. M. Reynolds. 2012. "Structure-from-Motion" photogrammetry:A low-cost, effective tool for geoscience applications. Geomorphology 179:300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
  51. Wu, J., R. Tillett, N. McFarlane, X. Ju, J. P. Siebert and P. Schofield. 2004. Extracting the three-dimensional shape of live pigs using stereo photogrammetry. Computers and Electronics in Agriculture 44(3):203-222. https://doi.org/10.1016/j.compag.2004.05.003
  52. Xiong, X., L. Yu, W. Yang, M. Liu, N. Jiang, D. Wu and Q. Liu. 2017. A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage. Plant Methods 13(1):7. https://doi.org/10.1186/s13007-017-0157-7
  53. Zhang, Y., P. Teng, Y. Shimizu, F. Hosoi and K. Omasa. 2016. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System. Sensors 16(6):874. https://doi.org/10.3390/s16060874
  54. Zhao, Y.-D., Y-r. Sun, X. Cai, H. Liu and P. S. Lammers. 2012. Identify Plant Drought Stress by 3D-Based Image. Journal of Integrative Agriculture 11(7):1207-1211. https://doi.org/10.1016/S2095-3119(12)60116-6