References
- Andersen, H. J., L. Reng and K. Kirk. 2005. Geometric plant properties by relaxed stereo vision using simulated annealing. Computers and Electronics in Agriculture 49(2):219-232. https://doi.org/10.1016/j.compag.2005.02.015
- Andujar, D., A. Ribeiro, C. Fernandez-Quintanilla and J. Dorado. 2016. Using depth cameras to extract structural parameters to assess the growth state and yield of cauliflower crops. Computers and Electronics in Agriculture 122:67-73. https://doi.org/10.1016/j.compag.2016.01.018
- Barone, S., A. Paoli and A. Razionale. 2012. 3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework. Sensors 12(12):16785-16801. https://doi.org/10.3390/s121216785
- Biskup, B., H. Scharr, U. Schurr and U. Rascher. 2007. A stereo imaging system for measuring structural parameters of plant canopies. Plant, Cell & Environment 30(10):1299-1308. https://doi.org/10.1111/j.1365-3040.2007.01702.x
- Blais, F. 2004. Review of 20 years of range sensor development. Journal of Electronic Imaging 13(1):231. https://doi.org/10.1117/1.1631921
- Chaivivatrakul, S., L. Tang, M. N. Dailey and A. D. Nakarmi. 2014. Automatic morphological trait characterization for corn plants via 3D holographic reconstruction. Computers and Electronics in Agriculture 109:109-123. https://doi.org/10.1016/j.compag.2014.09.005
- Chiabrando, F., E. Donadio and F. Rinaudo. 2015. SfM for Orthophoto to Generation:A Winning Approach for Cultural Heritage Knowledge. In ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W7:91-98.
- Dornbusch, T., S. Lorrain, D. Kuznetsov, A. Fortier, R. Liechti, I. Xenarios and C. Fankhauser. 2012. Measuring the diurnal pattern of leaf hyponasty and growth in Arabidopsis - a novel phenotyping approach using laser scanning. Functional Plant Biology 39(11):860. https://doi.org/10.1071/FP12018
- Fonstad, M. A., J. T. Dietrich, B. C. Courville, J. L. Jensen and P. E. Carbonneau. 2013. Topographic structure from motion:a new development in photogrammetric measurement. Earth Surface Processes and Landforms 38(4):421-430. https://doi.org/10.1002/esp.3366
- Golbach, F., G. Kootstra, S. Damjanovic, G. Otten and Rick van de Zedde. 2016. Validation of plant part measurements using a 3D reconstruction method suitable for high-throughput seedling phenotyping. Machine Vision and Applications 27(5):663-680. https://doi.org/10.1007/s00138-015-0727-5
- Hansard, M., S. Lee, O. Choi and R. Horaud. 2012. Time of Flight Cameras:Principles, Methods and Applications. SpringerBriefs in Computer Science (Vol. 95). London: Springer.
- Hosoi, F., K. Nakabayashi and K. Omasa. 2011. 3-D Modeling of Tomato Canopies Using a High-Resolution Portable Scanning Lidar for Extracting Structural Information. Sensors 11(12):2166-2174. https://doi.org/10.3390/s110202166
- Hu, P., Y. Guo, B. Li, J. Zhu and Y. Ma. 2015. Three-dimensional reconstruction and its precision evaluation of plant architecture based on multiple view stereo method. Transactions of the Chinese Society of Agricultural Engineering, 31(11):209-214.
- Ivanov, N., P. Boissard, M. Chapron and B. Andrieu. 1995. Computer stereo plotting for 3-D reconstruction of a maize canopy. Agricultural and Forest Meteorology 75(1-3):85-102. https://doi.org/10.1016/0168-1923(94)02204-W
- Jarvis, R. A. 1983. A Perspective on Range Finding Techniques for Computer Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-5(2):122-139.
- Jay, S., G. Rabatel, X. Hadoux, D. Moura and N. Gorretta. 2015. In-field crop row phenotyping from 3D modeling performed using Structure from Motion. Computers and Electronics in Agriculture 110:70-77. https://doi.org/10.1016/j.compag.2014.09.021
- Jin, J. and L. Tang. 2009. Corn plant sensing using real-time stereo vision. Journal of Field Robotics 26(6-7):591-608. https://doi.org/10.1002/rob.20293
- Ju, X., J. Paul Siebert, N. J. B. McFarlane, J. Wu, R. D. Tillett and C. Patrick Schofield. 2004. A stereo imaging system for the metric 3D recovery of porcine surface anatomy. Sensor Review 24(3):298-307. https://doi.org/10.1108/02602280410545948
- Kawasue, K., T. Ikeda, T. Tokunaga and H. Harada. 2013. Three-dimensional shape measurement system for black cattle using KINECT sensor. Journal of Circuits, Systems and Signal Process 4(7):222-230.
- Kawasue, K., K. D. Win, K. Yoshida and T. Tokunaga. 2017. Black cattle body shape and temperature measurement using thermography and KINECT sensor. Artificial Life and Robotics 22(4):1-7. https://doi.org/10.1007/s10015-016-0337-y
- Kuzuhara, Y., K. Kawamura, R. Yoshitoshi, T. Tamaki, S. Sugai, M. Ikegami and T. Yasuda. 2015. A preliminarily study for predicting body weight and milk properties in lactating Holstein cows using a three-dimensional camera system. Computers and Electronics in Agriculture 111:186-193. https://doi.org/10.1016/j.compag.2014.12.020
- Lati, R. N., S. Filin and H. Eizenberg. 2013. Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points. Precision Agriculture 14(6):586-605. https://doi.org/10.1007/s11119-013-9317-6
- Lazaros, N., G. C. Sirakoulis and A. Gasteratos. 2008. Review of Stereo Vision Algorithms: From Software to Hardware. International Journal of Optomechatronics 2(4):435-462. https://doi.org/10.1080/15599610802438680
- Lou, L., Y. Liu, J. Han and J. H. Doonan. 2014. Accurate Multi-View Stereo 3D Reconstruction for Cost-Effective Plant Phenotyping. In: Campilho A., Kamel M. (eds) Image Analysis and Recognition. ICIAR 2014. Lecture Notes in Computer Science, vol 8815. London, Springer.
- McCarthy, C. L., N. H. Hancock and S. R. Raine. 2010. Applied machine vision of plants: a review with implications for field deployment in automated farming operations. Intelligent Service Robotics 3(4):209-217. https://doi.org/10.1007/s11370-010-0075-2
- Menesatti, P., C. Costa, F. Antonucci, R. Steri, F. Pallottino and G. Catillo. 2014. A low-cost stereovision system to estimate size and weight of live sheep. Computers and Electronics in Agriculture 103:33-38. https://doi.org/10.1016/j.compag.2014.01.018
- Miller, J., J. Morgenroth and C. Gomez. 2015. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban Forestry & Urban Greening 14(4):932-940. https://doi.org/10.1016/j.ufug.2015.09.001
- Muller-Linow, M., F. P.-Espinosa, H. Scharr and U. Rascher. 2015. The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool. Plant Methods 11(1):11. https://doi.org/10.1186/s13007-015-0052-z
- Munaro, M., E. W. Y. So, S. Tonello and E. Menegatti. 2015. Efficient Completeness Inspection Using Real-Time 3D Color Reconstruction with a Dual-Laser Triangulation System. London, Springer.
- Nakarmi, A. D. and L. Tang. 2012. Automatic inter-plant spacing sensing at early growth stages using a 3D vision sensor. Computers and Electronics in Agriculture 82:23-31. https://doi.org/10.1016/j.compag.2011.12.011
- Pallottino, F., R. Steri, P. Menesatti, F. Antonucci, C. Costa, S. Figorilli and G. Catillo 2015. Comparison between manual and stereovision body traits measurements of Lipizzan horses. Computers and Electronics in Agriculture 118:408-413. https://doi.org/10.1016/j.compag.2015.09.019
- Pankaj, D. S., R. Nidamanuri and P. Prasad. 2013. 3-D Imaging Techniques and Review of Products. In Proc. of International Conference on Innovations in Computer Science and Engineering, 1-6.
- Paproki, A., X. Sirault, S. Berry, R. Furbank and J. Fripp. 2012. A novel mesh processing based technique for 3D plant analysis. BMC Plant Biology 12(1):63. https://doi.org/10.1186/1471-2229-12-63
- Paulus, S., J. Behmann, A-K. Mahlein, L. Plumer and H. Kuhlmann. 2014. Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping. Sensors 14(2):3001-18. https://doi.org/10.3390/s140203001
- Paulus, S., J. Dupuis, A. -K. Mahlein and H. Kuhlmann. 2013. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping. BMC Bioinformatics 14(1):238. https://doi.org/10.1186/1471-2105-14-238
- Paulus, S., J. Dupuis, S. Riedel and H. Kuhlmann. 2014. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping. Sensors 14(7):12670-12686. https://doi.org/10.3390/s140712670
- Paulus, S., H. Schumann, H. Kuhlmann and J. Leon. 2014. High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants. Biosystems Engineering 121:1-11.
- Rose, J., S. Paulus and H. Kuhlmann. 2015. Accuracy Analysis of a Multi-View Stereo Approach for Phenotyping of Tomato Plants at the Organ Level. Sensors 15(5):9651-9665. https://doi.org/10.3390/s150509651
- Rovira-Mas, F., Q. Zhang, M. Kise and J. F. Reid. 2006. Agricultural 3D Maps with Stereovision. In 2006 IEEE/ION Position, Location and Navigation Symposium, IEEE 1045-1053.
- Saeys, W., B. Lenaerts, G. Craessaerts and J. De Baerdemaeker. 2009. Estimation of the crop density of small grains using LiDAR sensors. Biosystems Engineering 102(1):22-30. https://doi.org/10.1016/j.biosystemseng.2008.10.003
- Sansoni, G., M. Trebeschi and F. Docchio. 2009. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine and Criminal Investigation. Sensors 9(1):568-601. https://doi.org/10.3390/s90100568
- Sarbolandi, H., D. Lefloch and A. Kolb. 2015. Kinect range sensing: Structured-light versus Time-of-Flight Kinect. Computer Vision and Image Understanding 139:1-20. https://doi.org/10.1016/j.cviu.2015.05.006
- Shi, C., G. Teng and Z. Li. 2016. An approach of pig weight estimation using binocular stereo system based on LabVIEW. Computers and Electronics in Agriculture 129:37-43. https://doi.org/10.1016/j.compag.2016.08.012
- van der Heijden, G., Y. Song, G. Horgan, G. Polder, A. Dieleman, M. Bink and C. Glasbey. 2012. SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Functional Plant Biology 39(11):870. https://doi.org/10.1071/FP12019
- Varga, M. and J. Jadlovsky. 2016. 3D imaging and image processing-literature review. In 16 Scientific Conference of Young Researchers, Herl'any, Slovakia: Faculty of Electrical Engineering and Informatics Technical University of Kosice, 12-15.
- Vazquez-Arellano, M., H. W. Griepentrog, D. Reiser and D. S. Paraforos. 2016. 3-D Imaging Systems for Agricultural Applications-A Review. Sensors 16(5).
- Wang, H., Y. Lin, Z. Wang, Y. Yao, Y. Zhang and L. Wu. 2017. Validation of a low-cost 2D laser scanner in development of a more-affordable mobile terrestrial proximal sensing system for 3D plant structure phenotyping in indoor environment. Computers and Electronics in Agriculture 140:180-189. https://doi.org/10.1016/j.compag.2017.06.002
- Wang, Q., S. Nuske, M. Bergerman and S. Singh. 2013. Automated Crop Yield Estimation for Apple Orchards. In Experimental Robotics, Springer, Heidelberg, 745-758.
- Weiss, U. and P. Biber. 2011. Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robotics and Autonomous Systems 59(5):265-273. https://doi.org/10.1016/j.robot.2011.02.011
- Westoby, M. J., J. Brasington, N. F. Glasser, M. J. Hambrey and J. M. Reynolds. 2012. "Structure-from-Motion" photogrammetry:A low-cost, effective tool for geoscience applications. Geomorphology 179:300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
- Wu, J., R. Tillett, N. McFarlane, X. Ju, J. P. Siebert and P. Schofield. 2004. Extracting the three-dimensional shape of live pigs using stereo photogrammetry. Computers and Electronics in Agriculture 44(3):203-222. https://doi.org/10.1016/j.compag.2004.05.003
- Xiong, X., L. Yu, W. Yang, M. Liu, N. Jiang, D. Wu and Q. Liu. 2017. A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage. Plant Methods 13(1):7. https://doi.org/10.1186/s13007-017-0157-7
- Zhang, Y., P. Teng, Y. Shimizu, F. Hosoi and K. Omasa. 2016. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System. Sensors 16(6):874. https://doi.org/10.3390/s16060874
- Zhao, Y.-D., Y-r. Sun, X. Cai, H. Liu and P. S. Lammers. 2012. Identify Plant Drought Stress by 3D-Based Image. Journal of Integrative Agriculture 11(7):1207-1211. https://doi.org/10.1016/S2095-3119(12)60116-6