• Title/Summary/Keyword: Image mapping

Search Result 1,172, Processing Time 0.027 seconds

A study on the transparent screen projection mapping using depaysement (데페이즈망 기법을 활용한 투명스크린 프로젝션 맵핑 연구)

  • Park, Ki-Deok;Kim, Tae-Hyoung;Chung, Jean-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.8
    • /
    • pp.331-340
    • /
    • 2013
  • Depaysement, suggested by the well-known surrealist Rene Magritte, has been used for and applied to many media. Application of depaysement through various media such as TV, commercial, and advertisement, attempted to provide interest by deviation from fixed ideas and visual shock, placing common objects in new and strange environment. The study applied screen projection mapping using a transparent screen and objet for different purposes to projection mapping media, applying depaysement to the artwork 'Illusion' in order to suggest visual pleasure, possibility as a new media, and projection mapping using transparent screen and objet. The work cases were suggested by applying expressive methods and effects according to three classifications - modulation of space, combination of conflicting images, and transformation and change of objects - in depaysement, and analyzed by types based on classification of the layout, typography, image, color, and time. Through 'Illusion,' new objet and characteristics of the media are applied and expanded by using projection mapping and depaysement.

3D Visualization Technique for Occluded Objects in Integral Imaging Using Modified Smart Pixel Mapping

  • Lee, Min-Chul;Han, Jaeseung;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.256-261
    • /
    • 2017
  • In this paper, we propose a modified smart pixel mapping (SPM) to visualize occluded three-dimensional (3D) objects in real image fields. In integral imaging, orthoscopic real 3D images cannot be displayed because of lenslets and the converging light field from elemental images. Thus, pseudoscopic-to-orthoscopic conversion which rotates each elemental image by 180 degree, has been proposed so that the orthoscopic virtual 3D image can be displayed. However, the orthoscopic real 3D image cannot be displayed. Hence, a conventional SPM that recaptures elemental images for the orthoscopic real 3D image using virtual pinhole array has been reported. However, it has a critical limitation in that the number of pixels for each elemental image is equal to the number of elemental images. Therefore, in this paper, we propose a modified SPM that can solve this critical limitation in a conventional SPM and can also visualize the occluded objects efficiently.

A HDR Algorithm for Single Image Based on Exposure Fusion Using Variable Gamma Coefficient (가변적 감마 계수를 이용한 노출융합기반 단일영상 HDR기법)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1059-1067
    • /
    • 2021
  • In this paper, a HDR algorithm for a single image is proposed using the exposure fusion, that adaptively calculates gamma correction coefficients according to the image distribution. Since typical HDR methods should use at least three images with different exposure values at the same scene, the main problem was that they could not be applied at the single shot image. Thus, HDR enhancements based on a single image using tone mapping and histogram modifications were recently presented, but these created some location-specific noises due to improper corrections. Therefore, the proposed algorithm calculates proper gamma coefficients according to the distribution of the input image and generates different exposure images which are corrected by the dark and the bright region stretching. A HDR image reproduction controlling exposure fusion weights among the gamma corrected and the original pixels is presented. As the result, the proposed algorithm can reduce certain noises at both the flat and the edge areas and obtain subjectively superior image quality to that of conventional methods.

A Study on the Utilization of Projection Mapping in Personal Media (Personal Media에서 Projection Mapping 활용성 연구)

  • SHI, YU;Chung, Jean-Hun
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.377-383
    • /
    • 2020
  • This paper studies the current development of personal media and the development of project mapping technology. The speed of social life is speeding up, and information dissemination tends to be fragmented. With the rapid development of mobile technology in recent years, personal media has gradually attracted the attention of people. And now image production and video editing become more and more simple in mobile devices, which provide a basis for the active personal media. The emergence of video content with high creative which is producing by projection mapping. And also providing an attractive new content for the general public. With the popularity of home projector, and the development of mobile terminal projection mapping production application. In the future, it will be possible to use projection mapping to produce personal media contents on the basis of mobile media platform.

Comparison of Quantitative Analysis of Radioactive Corrosion Products Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Choo, Young Sun
    • Corrosion Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.231-238
    • /
    • 2020
  • Radioactive corrosion product specimens were analyzed using an electron probe microanalyzer (EPMA) and X-ray image mapping. It is difficult to analyze the composition of radioactive corrosion products using an EPMA due to the size and rough shape of the surfaces. It is particularly challenging to analyze the composition of radioactive corrosion products in the form of piled up, small grains. However, useful results can be derived by applying a semi-quantitative analysis method using an EPMA with X-ray images. A standard-less, semi-quantitative method for wavelength dispersive spectrometry. EPMA analysis was developed with the objective of simplifying the analytical procedure required. In this study, we verified the reasonable theory of semi-quantitative analysis and observed the semi-quantitative results using a sample with a good surface condition. Based on the validated results, we analyzed highly rough-surface radioactive corrosion products and assessed their composition. Finally, the usefulness of the semi-quantitative analysis was reviewed by verifying the results of the analysis of radioactive corrosion products collected from spent nuclear fuel rods.

Update of Topographic Map using QuickBird Orthoimage (Quick Bird 정사영상을 이용한 지형도 갱신)

  • 이창경;우현권;정인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.295-301
    • /
    • 2004
  • Satellite captures images periodically and economically over the area wider than aerial photographs, and reconnaissance to unapproachable area. For these advantages, mapping using high resolution satellite image has high potentials of marketability and development. Therefore, utilization of satellite image in mapping and GIS is expected to be growing and research on describable feature, positional accuracy and, possible mapping scale is urgently needed. This research presented that Quick Bird orthoimage could be used to update digital map on a scale of 1:5,000. Quick Bird image was corrected geometrically based on ground control points. DEM was generated using height data of digital topographic map. The orthoimge was produced by digital differential rectification based on DEM which was generated using height data of digital topographic map(scale 1;5,000 and 1;1,000). When the digital topographic map was overlaid with the orthoimage, it was very easy to find changed region or new features builded after the map compiled.

  • PDF

A fractal coding technique for color image sequence employing non-contractive interframe mapping (비축소 프레임간 변환을 이용한 컬러 동영상 프랙탈 부호화 기법)

  • 김창수;김인철;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1707-1714
    • /
    • 1997
  • This paper proposes a novel algorithm for fractal coding of image sequence, based on the CPM (Circular Prediction Mapping) and the NCIM (Non Contractive Interframe Mapping). In the CPM and the NCIM, each range block is approximated by a domain block in the adjacent frame, which is of the same size as the range block. Also, in this paepr, we propose a coding scheme of color components and an algorithm for controlling the bit rate, resepectively, for practical implementation of the fractal coder. The computer simulation results on real image sequences demonstrate that the proposed algorithm provides very promising performance at low bit-rate, below 256 Kbps.

  • PDF

Geological Mapping using SWIR and VNIR Bands of ASTER Image Data

  • Shanmugam, Sanjeevi;Singaravelu, Jayaseelan
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1230-1232
    • /
    • 2003
  • This study aims to extract maximum geological information using the ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) images of a part of south India. The area chosen for this study is characterized by rock types such as Migmatite, Magnetite Quartzite, Charnockite, Granite, dykes, Granitoid gneiss and Ultramafic rocks, and minerals such as Bauxite, Magnesite, Iron ores, Calcite etc. Advantage was taken of the characteristic reflectance and absorption phenomenon in the VNIR, SWIR and TIR bands for these rocks and minerals, and they were mapped in detail. Image processing methods such as contrast stretching, PC analysis, band ratios and fusion were used in this study. The results of the processing matched with the field details and showed additional details, thus demonstrating the usefulness of ASTER (especially the SWIR bands) data for better geological mapping.

  • PDF

Rational Function Model Generation for CCD Linear Images and its Application in JX4 DPW

  • Zhao, Liping;Wang, Wei;Liu, Fengde;Li, Jian
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.387-389
    • /
    • 2003
  • Rational function model (RFM) is a universal sensor model for remote sensing image restitution. It is able to substitute for models of all known sensors. In this paper, RFM generation by CCD linear image models is described in detail. A principle of RFM-based 3D reconstruction and its implementation in JX4 DPW is also described. Experiments using IKONOS and SPOT5 images are carried out on JX4 DPW. Results show that RFM generated is feasible for photogrammetric restitution of CCD linear images.

  • PDF

Performance analysis on the geometric correction algorithms using GCPs - polynomial warping and full camera modelling algorithm

  • Shin, Dong-Seok;Lee, Young-Ran
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.252-256
    • /
    • 1998
  • Accurate mapping of satellite images is one of the most important Parts in many remote sensing applications. Since the position and the attitude of a satellite during image acquisition cannot be determined accurately enough, it is normal to have several hundred meters' ground-mapping errors in the systematically corrected images. The users which require a pixel-level or a sub-pixel level mapping accuracy for high-resolution satellite images must use a number of Ground Control Points (GCPs). In this paper, the performance of two geometric correction algorithms is tested and compared. One is the polynomial warping algorithm which is simple and popular enough to be implemented in most of the commercial satellite image processing software. The other is full camera modelling algorithm using Physical orbit-sensor-Earth geometry which is used in satellite image data receiving, pre-processing and distribution stations. Several criteria were considered for the performance analysis : ultimate correction accuracy, GCP representatibility, number of GCPs required, convergence speed, sensitiveness to inaccurate GCPs, usefulness of the correction results. This paper focuses on the usefulness of the precision correction algorithm for regular image pre-processing operations. This means that not only final correction accuracy but also the number of GCPs and their spatial distribution required for an image correction are important factors. Both correction algorithms were implemented and will be used for the precision correction of KITSAT-3 images.

  • PDF