• 제목/요약/키워드: Image indexing and retrieval

검색결과 113건 처리시간 0.031초

내용기반 영상검색 시스템 (Content-based Image Retrieval System)

  • 유헌우;장동식;정세환;박진형;송광섭
    • 대한산업공학회지
    • /
    • 제26권4호
    • /
    • pp.363-375
    • /
    • 2000
  • In this paper we propose a content-based image retrieval method that can search large image databases efficiently by color, texture, and shape content. Quantized RGB histograms and the dominant triple (hue, saturation, and value), which are extracted from quantized HSV joint histogram in the local image region, are used for representing global/local color information in the image. Entropy and maximum entry from co-occurrence matrices are used for texture information and edge angle histogram is used for representing shape information. Relevance feedback approach, which has coupled proposed features, is used for obtaining better retrieval accuracy. Simulation results illustrate the above method provides 77.5 percent precision rate without relevance feedback and increased precision rate using relevance feedback for overall queries. We also present a new indexing method that supports fast retrieval in large image databases. Tree structures constructed by k-means algorithm, along with the idea of triangle inequality, eliminate candidate images for similarity calculation between query image and each database image. We find that the proposed method reduces calculation up to average 92.9 percent of the images from direct comparison.

  • PDF

RGB 최대 주파수 인덱싱과 BW 클러스터링을 이용한 콘텐츠 기반 영상 검색 (Content based Image Retrieval using RGB Maximum Frequency Indexing and BW Clustering)

  • 강지영;백정욱;강광원;안영은;박종안
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권2호
    • /
    • pp.71-79
    • /
    • 2008
  • 칼라 코렐로그램은 계산량이 많아지고 저장 공간이 커져서 검색하는 시간이 길어지므로 일반적으로 64*64 로 양자화 하여 사용되어지는데, 본 논문에서는 메디안 픽셀 특징에 공간정보를 이용하여 9*9 로 양자화 하였다. 기존 알고리즘의 경우 메디안 값이 중복되는 경우 중복된 값들을 정렬하여 그 중 가운데 값을 특징자 값으로 정하였으나, 제안된 알고리즘에서는 중복된 값들을 정렬하여 그 중 공간정보가 가장 작은 값을 특징자 값으로 정하였다. 그리고 코렐로그램을 적용하여 특징자 테이블을 구성하고 이를 이용하여 비교하였다. 제안된 알고리즘은 시뮬레이션을 통해 테스트 하였고 그 결과 기존 알고리즘 보다 더 나은 검색성능을 나타내게 되었다.

  • PDF

Content-Based Indexing and Retrieval in Large Image Databases

  • Cha, Guang-Ho;Chung, Chin-Wan
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권2호
    • /
    • pp.134-144
    • /
    • 1996
  • In this paper, we propose a new access method, called the HG-tree, to support indexing and retrieval by image content in large image databases. Image content is represented by a point in a multidimensional feature space. The types of queries considered are the range query and the nearest-neighbor query, both in a multidimensional space. Our goals are twofold: increasing the storage utilization and decreasing the area covered by the directory regions of the index tree. The high storage utilization and the small directory area reduce the number of nodes that have to be touched during the query processing. The first goal is achieved by absorbing splitting if possible, and when splitting is necessary, converting two nodes to three. The second goal is achieved by maintaining the area occupied by the directory region minimally on the directory nodes. We note that there is a trade-off between the two design goals, but the HG-tree is so flexible that it can control the trade-off. We present the design of our access method and associated algorithms. In addition, we report the results of a series of tests, comparing the proposed access method with the buddy-tree, which is one of the most successful point access methods for a multidimensional space. The results show the superiority of our method.

  • PDF

적응 분할과 벡터 근사에 기반한 고차원 이미지 색인 기법 (High-Dimensional Image Indexing based on Adaptive Partitioning ana Vector Approximation)

  • 차광호;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권2호
    • /
    • pp.128-137
    • /
    • 2002
  • 이 논문은 고차원 이미지 데이타의 효율적인 색인을 위한 LCP+-file을 제시한다. 멀티미디어 데이타의 사용이 증가하면서 고차원 이미지 데이타의 색인과 검색의 지원에 대한 요구가 증가하고 있다. 최근에 고차원 데이타의 색인을 위해 벡터 근사에 기반한 LPC-file (5)이 개발되었다. LPC-file은 특히, 데이터 집합이 균일하게 분포할 때는 좋은 성능을 나타내지만 클러스터(cluster)를 이를 때는 성능이 하락한다. 본 논문은 강하게 클러스터를 이루는 이미지 데이타 집합에 대해 LPC-file의 성능을 향상시킨 LCP+-file을 제시한다. 기본 아이디어는 고밀도 클러스터를 갖는 부분 공간을 찾기 위해 데이타 공간을 적응적으로 분할하고, 그 공간에 대해 벡터 근사의 식별 능력을 향상시키기 위해 더 많은 수의 비트를 할당한다. 그러나 분할된 공간이 비트들을 공유하기 때문에 사용되는 전체 비트 수는 오히려 줄어든다. 실험 결과에 따르면 LCP+-file은 강하게 클러스터를 이루는 이미지 데이터 집합에 대해 LPC-file의 성능을 크게 향상시킨다.

모양 기반의 식물 잎 이미지 검색 시스템 (Shape-Based Leaf Image Retrieval System)

  • 남윤영;황인준
    • 정보처리학회논문지D
    • /
    • 제13D권1호
    • /
    • pp.29-36
    • /
    • 2006
  • 본 논문에서는 식물 잎 모양을 기반으로 이미지를 표현하고 검색하는 식물 잎 이미지 검색 시스템을 보인다. 보다 효과적인 잎의 모양 표현을 위하여, MPP(Minimum Perimeter Polygons) 알고리즘을 개선하였고, 처리시간을 줄이기 위하여, NN(Nearest Neighbor) 검색을 개선한 동적 매칭알고리즘을 제안하였다. 본 시스템은 사용자에게 질의 이미지를 업로드하는 인터페이스를 제공하거나 모양 특징에 기반한 질의를 생성하는 도구를 제공하고 유사도에 따른 이미지를 검색한다. 검색의 편의성을 위해, 웹상에서 잎 모양과 잎차례를 스케치하여 손쉽게 질의할 수 있게 하였다. 실험에서는, 한국에 자생하는 식물 이미지 데이터베이스를 구축하였으며, 질의를 통해 검색된 유사한 이미지의 개수를 기반으로 성능을 평가하였다.

모양기반 식물 잎 이미지 검색을 위한 표현 및 매칭 기법 (A Representation and Matching Method for Shape-based Leaf Image Retrieval)

  • 남윤영;황인준
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1013-1020
    • /
    • 2005
  • 본 논문은 모양 특성을 이용한 효과적인 식물 잎 이미지 검색 시스템을 제시한다. 잎 이미지의 더 효과적인 표현을 위해 개선된 MPP 알고리즘을 제안하고, 매칭에 소요되는 시간을 줄이기 위해 기존의 Nearest Neighbor(NN) 검색을 수정한 동적인 매칭 알고리즘을 제시한다. 특히, 더 나은 정확율과 효율성을 위해, 잎 모양과 잎차례를 스케치하여 질의할 수 있도록 하였다. 실험에서는 제안한 알고리즘과 기존의 알고리즘인 CCD(Centroid Contour Distance), Fourier Descriptor. Curvature Scale Space Descriptor (CSSD), Moment Invariants, MPP와 비교하였다. 1000여개의 식물 잎 이미지를 통한 실험결과는 제안한 방법이 기존의 기법보다 더 좋은 성능임을 보였다.

비-파라미터 기반의 움직임 분류를 통한 비디오 검색 기법 (Video retrieval method using non-parametric based motion classification)

  • 김낙우;최종수
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.1-11
    • /
    • 2006
  • 본 논문에서는 샷(shot) 기반 비디오 색인 구조에서 비-파라미터(non-parametric) 기반의 움직임 분류를 통한 비디오 영상 검색 기법을 제안한다. 본 논문에서 제안하는 비디오 검색 시스템은 장면 전환 기법을 통해 얻은 샷 단위의 짧은 비디오로부터 대표 프레임과 움직임 정보를 취득한 후, 이를 통해 시각적 특징과 움직임 특징을 추출하여 유사도를 비교함으로써 시-공간적 특징을 이용한 실시간 검색이 가능하도록 구현되었다. 비-파라미터 기반의 움직임 특징의 추출은 MPEG 압축 스트림으로부터 정규화된 움직임 벡터계(界)를 추출한 후, 각각의 정규화된 움직임 벡터를 여러 개의 각도 빈(bin)으로 양자화하고 이의 평균과 분산, 방향 등을 고려함으로써 효과적으로 이루어진다. 대표 프레임에서의 시각 특징 검출을 위해서는 에지 기반의 공간 기술자를 이용하였다. 실험 결과는 영상 색인 및 검색에 있어서 제안된 시스템이 매우 효과적임을 잘 나타내고 있다. 데이터베이스 내 영상의 색인을 위해서는 R*-tree 구조를 이용한다.

모멘트 특성을 이용한 다중 객체 이미지 검색 시스템 구현 (Implementation of System Retrieving Multi-Object Image Using Property of Moments)

  • 안광일;안재형
    • 한국멀티미디어학회논문지
    • /
    • 제3권5호
    • /
    • pp.454-460
    • /
    • 2000
  • 영상과 같은 다양하고 복잡한 데이터 검색은 기존의 키워드를 이용한 검색이 아닌 내용 기반 검색 방법이 요구된다. 본 논문에서는 물체의 위치 이동이나 회전, 크기 변화 등과 같은 각종 변환에 민감하지 않은 불변모멘트(invariant moments)값의 특성을 이용하여 사용자 질의로서 입력된 객체를 효율적으로 검색할 수 있는 시스템을 구현하였다. 영상내의 단일 객체뿐만 아니라 다중 객체들도 효과적으로 검출하기 위해 레이블링(labeling) 알고리즘을 적용해 각각의 객체를 따로 분리하여 불변모멘트를 적용하는 방법을 이용했다. 또한, 검색 시간 단축 및 영상의 효율적인 인덱싱(indexing)을 위해 해싱을 응용한 기법을 적용하였다. 실험결과, precision 85%, recall 23%의 높은 검색효율을 보였고 기존의 전체 영상의 특징을 가지고는 정확히 표현할 수 없는 객체들의 모양을 정확히 표현해 줌으로써 보다 정화한 검색 결과를 얻을 수 있었다.

  • PDF

자동 주석 갱신 및 멀티 분할 색상 히스토그램 기법을 이용한 의미기반 비디오 검색 시스템 (A Semantic-based Video Retrieval System using Method of Automatic Annotation Update and Multi-Partition Color Histogram)

  • 이광형;전문석
    • 한국통신학회논문지
    • /
    • 제29권8C호
    • /
    • pp.1133-1141
    • /
    • 2004
  • 비디오 데이터를 효율적으로 처리하기 위해서는 비디오 데이터가 가지고 있는 내용에 대한 정보를 데이터베이스에 저장하고 사용자들의 다양한 질의를 처리할 수 있는 의미기반 검색 기법이 요구된다. 본 논문에서는 주석기반 검색과 특징기반 검색을 이용하여 대용량의 비디오 데이터에 대한 사용자의 다양한 의미검색을 지원하는 에이전트 기반에서의 자동화되고 통합된 비디오 의미기반 검색 시스템을 제안한다. 사용자의 기본적인 질의와 질의에 의해 추출된 키 프레임의 이미지를 선택함으로써 에이전트는 추출된 키 프레임의 주석에 대한 의미를 더욱 구체화시킨다. 또한, 사용자에 의해 선택된 키 프레임은 질의 이미지가 되어 제안하는 특징기반 검색기법을 통해 가장 유사한 키 프레임을 검색한다. 설계하고 구현한 시스템은 실험을 통한 성능평가에서 90% 이상의 높은 정확도를 보였다.

스마트 센서와 시각적 기술자를 결합한 사진 검색 시스템 (Photo Retrieval System using Combination of Smart Sensor and Visual Descriptor)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제13권2호
    • /
    • pp.45-52
    • /
    • 2014
  • This paper proposes an efficient photo retrieval system that automatically indexes for searching of relevant images, using a combination of geo-coded information, direction/location of image capture device and content-based visual features. A photo image is labeled with its GPS (Global Positioning System) coordinates and direction of the camera view at the moment of capture, and the label leads to generate a geo-spatial index with three core elements of latitude, longitude and viewing direction. Then, content-based visual features are extracted and combined with the geo-spatial information, for indexing and retrieving the photo images. For user's querying process, the proposed method adopts two steps as a progressive approach, filtering the relevant subset prior to use a content-based ranking function. To evaluate the performance of the proposed scheme, we assess the simulation performance in terms of average precision and F-score, using a natural photo collection. Comparing the proposed approach to retrieve using only visual features, an improvement of 20.8% was observed. The experimental results show that the proposed method exhibited a significant enhancement of around 7.2% in retrieval effectiveness, compared to previous work. These results reveal that a combination of context and content analysis is markedly more efficient and meaningful that using only visual feature for image search.