• Title/Summary/Keyword: Image extraction

Search Result 2,625, Processing Time 0.028 seconds

A Study on Unmanned Image Tracking System based on Smart Phone (스마트폰 기반의 무인 영상 추적 시스템 연구)

  • Ahn, Byeong-tae
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.3
    • /
    • pp.30-35
    • /
    • 2019
  • An unattended recording system based on smartphone based image image tracking is rapidly developing. Among the existing products, a system that automatically tracks and rotates the object to be photographed using an infrared signal is very expensive for general users. Therefore, this paper proposes a mobile unattended recording system that enables automatic recording by anyone who uses a smartphone. The system consists of a commercial mobile camera, a servomotor that moves the camera from side to side, a microcontroller to control the motor, and a commercial wireless Bluetooth Earset for video audio input. In this paper, we designed a system that enables unattended recording through image tracking using smartphone.

Seasonal Images Classification with Convolutional Neural Networks (컨볼루션 신경망을 사용한 계절 이미지 분류)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.444-447
    • /
    • 2022
  • In recent years, computer vision image classification tasks have become faster and better due to deeper neural network architectures. But while most image classification tasks are designed to classify images based on specific image features (such as distinguishing between cats and dogs), there are not many classification models that have been trained to distinguish between time periods such as day and night or different seasons of the year. And while some research has been done into distinguishing between seasons in images of the same location, this paper presents a varied approach to the problem of seasonal classification of generic images. Three methods for seasonal image classification, from simple feature extraction, to building a convolutional neural network, to transfer learning were studied and the accuracy results were compared and analyzed.

  • PDF

Reversible Data Hiding in Permutation-based Encrypted Images with Strong Privacy

  • Shiu, Chih-Wei;Chen, Yu-Chi;Hong, Wien
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.1020-1042
    • /
    • 2019
  • Reversible data hiding in encrypted images (RDHEI) provides some real-time cloud applications; i.e. the cloud, acting as a data-hider, automatically embeds timestamp in the encrypted image uploaded by a content owner. Many existing methods of RDHEI only satisfy user privacy in which the data-hider does not know the original image, but leaks owner privacy in which the receiver can obtains the original image by decryption and extraction. In the literature, the method of Zhang et al. is the one providing weak content-owner privacy in which the content-owner and data-hider have to share a data-hiding key. In this paper, we take care of the stronger notion, called strong content-owner privacy, and achieve it by presenting a new reversible data hiding in encrypted images. In the proposed method, image decryption and message extraction are separately controlled by different types of keys, and thus such functionalities are decoupled to solve the privacy problem. At the technique level, the original image is segmented along a Hilbert filling curve. To keep image privacy, segments are transformed into an encrypted image by using random permutation. The encrypted image does not reveal significant information about the original one. Data embedment can be realized by using pixel histogram-style hiding, since this property, can be preserved before or after encryption. The proposed method is a modular method to compile some specific reversible data hiding to those in encrypted image with content owner privacy. Finally, our experimental results show that the image quality is 50.85dB when the averaged payload is 0.12bpp.

A Network-adaptive Context Extraction Method for JPEG2000 Using Tree-Structure of Coefficients from DWT (DWT 계수의 트리구조를 이용한 네트워크-적응적 JPEG2000 컨텍스트 추출방법)

  • Choi Hyun-Jun;Seo Young-Ho;Kim Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9C
    • /
    • pp.939-948
    • /
    • 2005
  • In EBCOT, the context extraction process takes excessive calculation time and this paper proposed a method to reduce this calculation time. That is, if a coefficient is less than a pre-defined threshold value the coefficient and its descendents skip the context extraction process. There is a trade-off relationship between the calculation time and the image quality or the amount of output data such that as this threshold value increases, the calculation time and the amount of output data decreases, but the image degradation increases. Therefore, by deciding this threshold value according to the network environments or conditions, it is possible to establish a network-adaptive context extraction method. The experimental results showed that the range of the threshold values for acceptable image quality(better than 30dB) is from 0 to 4. The experimental results showed that in this range the Resulting reduction rate in calculation time was from $3\%\;to\;64\%$ in average, the reduction rate in output data was from $32\%$ to $73\%$ in average, which means that large reduction in calculation time and output data can be obtained with a cost of an acceptable image quality degradation. Therefore, the proposed method is expected to be used efficiently in the application area such as the real-time image/video data communication in wireless environments, etc.

A Study on Method of Automatic Geospatial Feature Extraction through Relative Radiometric Normalization of High-resolution Satellite Images (고해상도 위성영상의 상대방사보정을 통한 자동화 지향 공간객체추출 방안 연구)

  • Lee, Dong-Gook;Lee, Hyun-Jik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.917-927
    • /
    • 2020
  • The Ministry of Land, Infrastructure and Transport of Korea is developing a CAS 500-1/2 satellite capable of photographing a GSD 0.5 m level image, and is developing a technology to utilize this. Therefore, this study attempted to develop a geospatial feature extraction technique aimed at automation as a technique for utilizing CAS 500-1/2 satellite images. KOMPSAT-3A satellite images that are expected to be most similar to CAS 500-1/2 were used for research and the possibility of automation of geospatial feature extraction was analyzed through relative radiometric normalization. For this purpose, the parameters and thresholds were applied equally to the reference images and relative radiometric normalized images, and the geospatial feature were extracted. The qualitative analysis was conducted on whether the extracted geospatial feature is extracted in a similar form from the reference image and relative radiometric normalized image. It was also intended to analyze the possibility of automation of geospatial feature extraction by quantitative analysis of whether the classification accuracy satisfies the target accuracy of 90% or more set in this study. As a result, it was confirmed that shape of geospatial feature extracted from reference image and relative radiometric normalized image were similar, and the classification accuracy analysis results showed that both satisfies the target accuracy of 90% or more. Therefore, it is believed that automation will be possible when extracting spatial objects through relative radiometric normalization.

A Study on Optimal Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery (고해상도 영상의 분류결과 개선을 위한 최적의 Shape-Size Index 추출에 관한 연구)

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • High spatial resolution satellite image classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, the extraction of the spatial information is one of the most important steps in high resolution satellite image classification. This study proposes a new spatial feature extraction method, named SSI(Shape-Size Index). SSI uses a simple region-growing based image segmentation and allocates spatial property value in each segment. The extracted feature is integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a SVM(Support Vector Machines) classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 and QuickBird-2 data are used for experiments. It is demonstrated that proposed SSI algorithm leads to a notable increase in classification accuracy.

A Hybrid Approach for Automated Building Area Extraction from High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 자동화된 건물 영역 추출 하이브리드 접근법)

  • An, Hyowon;Kim, Changjae;Lee, Hyosung;Kwon, Wonsuk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.545-554
    • /
    • 2019
  • This research aims to provide a building area extraction approach over the areas where data acquisition is impossible through field surveying, aerial photography and lidar scanning. Hence, high-resolution satellite images, which have high accessibility over the earth, are utilized for the automated building extraction in this study. 3D point clouds or DSM (Digital Surface Models), derived from the stereo image matching process, provides low quality of building area extraction due to their high level of noises and holes. In this regards, this research proposes a hybrid building area extraction approach which utilizes 3D point clouds (from image matching), and color and linear information (from imagery). First of all, ground and non-ground points are separated from 3D point clouds; then, the initial building hypothesis is extracted from the non-ground points. Secondly, color based building hypothesis is produced by considering the overlapping between the initial building hypothesis and the color segmentation result. Afterwards, line detection and space partitioning results are utilized to acquire the final building areas. The proposed approach shows 98.44% of correctness, 95.05% of completeness, and 1.05m of positional accuracy. Moreover, we see the possibility that the irregular shapes of building areas can be extracted through the proposed approach.

Interest area of game player through extraction of foreground Image (포그라인드 이미지 추출을 통한 게임 플레이어 관심 영역)

  • Lee, MyounJae
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.271-277
    • /
    • 2017
  • In the image processing, foreground image extraction is mainly applied to recognize a moving object or an object. In the game, the objects included in the foreground image can be mainly characters, non player characters, items, and the like. These objects can be the player's primary concern with objects that are the target of players' movement, attack, defense, and collection. In this background, this research is a study to extract players' interest areas. To this end, first, the foreground image is extracted. Second, the extracted foreground image is accumulated for a certain period of time, and the image is displayed as a result image. The accumulated foreground image according to the play time helps to know the location and frequency of screen appearance of game objects. This study can help players design their interest areas and design an efficient UX/UI.

A Study on Car License Plate Extraction using ACL Algorithm (ACL 알고리즘을 이용한 자동차 번호판 영역 추출에 대한 연구)

  • Jang, Seung-Ju;Shin, Byoung-Chul
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1113-1118
    • /
    • 2002
  • In recognition system of the car license plate, the most important is to extract the image of the license plate from a car image. In this paper, we use ACL (Adaptive Color Luminance) algorithm to extract the license plate image from a car image. The ACL algorithm that uses color and luminance information of a car image is used to extract the image of the license plate. In this paper, color, luminance and other related information of a car image are used to extract the image of the license plate from that of a car. In this reason, we call it the ACL algorithm. The ACL algorithm uses color, luminance information and other related information of a license plate. These informations are avaliable to exact the image of the license plate. The rate of extracting the image of the license plate from a car is 97%. The experimental result of the ACL algorithm for the character region is 92%.

An Extraction Method of Glomerulus Region from Renal Tissue Image (신장조직 영상에서 사구체 영역의 추출법)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.70-76
    • /
    • 2012
  • In this paper, an automatic extraction method of glomerulus region from human renal tissue image is presented. The important information reflecting the state of kidneys richly included in the glomeruli, so it should be the first step to extract the glomerulus region from the renal tissue image for the further quantitative analysis of the renal condition. Especially, there is no clear difference between the glomerulus and other tissues, so the glomerulus region can not be easily extracted from its background by the existing segmentation methods. The outer edge of a glomerulus region is regarded as a common property for the regions of this kind ; a two- dimensional Gaussian distribution is used to convolve with an original image first and then the image is thresholded at this blurred image ; a closed curve corresponding to the outer edge can be obtained by usual pattern processing skills like thinning, branch-cutting, hole-filling etc., Finally, the glomerulus region can be obtained by extracting the area in the original image surrounded by the closed curve. The glomerulus regions are correctly extracted by 85 percentages and experimental results show the proposed method is effective.