An unattended recording system based on smartphone based image image tracking is rapidly developing. Among the existing products, a system that automatically tracks and rotates the object to be photographed using an infrared signal is very expensive for general users. Therefore, this paper proposes a mobile unattended recording system that enables automatic recording by anyone who uses a smartphone. The system consists of a commercial mobile camera, a servomotor that moves the camera from side to side, a microcontroller to control the motor, and a commercial wireless Bluetooth Earset for video audio input. In this paper, we designed a system that enables unattended recording through image tracking using smartphone.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.444-447
/
2022
In recent years, computer vision image classification tasks have become faster and better due to deeper neural network architectures. But while most image classification tasks are designed to classify images based on specific image features (such as distinguishing between cats and dogs), there are not many classification models that have been trained to distinguish between time periods such as day and night or different seasons of the year. And while some research has been done into distinguishing between seasons in images of the same location, this paper presents a varied approach to the problem of seasonal classification of generic images. Three methods for seasonal image classification, from simple feature extraction, to building a convolutional neural network, to transfer learning were studied and the accuracy results were compared and analyzed.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.2
/
pp.1020-1042
/
2019
Reversible data hiding in encrypted images (RDHEI) provides some real-time cloud applications; i.e. the cloud, acting as a data-hider, automatically embeds timestamp in the encrypted image uploaded by a content owner. Many existing methods of RDHEI only satisfy user privacy in which the data-hider does not know the original image, but leaks owner privacy in which the receiver can obtains the original image by decryption and extraction. In the literature, the method of Zhang et al. is the one providing weak content-owner privacy in which the content-owner and data-hider have to share a data-hiding key. In this paper, we take care of the stronger notion, called strong content-owner privacy, and achieve it by presenting a new reversible data hiding in encrypted images. In the proposed method, image decryption and message extraction are separately controlled by different types of keys, and thus such functionalities are decoupled to solve the privacy problem. At the technique level, the original image is segmented along a Hilbert filling curve. To keep image privacy, segments are transformed into an encrypted image by using random permutation. The encrypted image does not reveal significant information about the original one. Data embedment can be realized by using pixel histogram-style hiding, since this property, can be preserved before or after encryption. The proposed method is a modular method to compile some specific reversible data hiding to those in encrypted image with content owner privacy. Finally, our experimental results show that the image quality is 50.85dB when the averaged payload is 0.12bpp.
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.9C
/
pp.939-948
/
2005
In EBCOT, the context extraction process takes excessive calculation time and this paper proposed a method to reduce this calculation time. That is, if a coefficient is less than a pre-defined threshold value the coefficient and its descendents skip the context extraction process. There is a trade-off relationship between the calculation time and the image quality or the amount of output data such that as this threshold value increases, the calculation time and the amount of output data decreases, but the image degradation increases. Therefore, by deciding this threshold value according to the network environments or conditions, it is possible to establish a network-adaptive context extraction method. The experimental results showed that the range of the threshold values for acceptable image quality(better than 30dB) is from 0 to 4. The experimental results showed that in this range the Resulting reduction rate in calculation time was from $3\%\;to\;64\%$ in average, the reduction rate in output data was from $32\%$ to $73\%$ in average, which means that large reduction in calculation time and output data can be obtained with a cost of an acceptable image quality degradation. Therefore, the proposed method is expected to be used efficiently in the application area such as the real-time image/video data communication in wireless environments, etc.
The Ministry of Land, Infrastructure and Transport of Korea is developing a CAS 500-1/2 satellite capable of photographing a GSD 0.5 m level image, and is developing a technology to utilize this. Therefore, this study attempted to develop a geospatial feature extraction technique aimed at automation as a technique for utilizing CAS 500-1/2 satellite images. KOMPSAT-3A satellite images that are expected to be most similar to CAS 500-1/2 were used for research and the possibility of automation of geospatial feature extraction was analyzed through relative radiometric normalization. For this purpose, the parameters and thresholds were applied equally to the reference images and relative radiometric normalized images, and the geospatial feature were extracted. The qualitative analysis was conducted on whether the extracted geospatial feature is extracted in a similar form from the reference image and relative radiometric normalized image. It was also intended to analyze the possibility of automation of geospatial feature extraction by quantitative analysis of whether the classification accuracy satisfies the target accuracy of 90% or more set in this study. As a result, it was confirmed that shape of geospatial feature extracted from reference image and relative radiometric normalized image were similar, and the classification accuracy analysis results showed that both satisfies the target accuracy of 90% or more. Therefore, it is believed that automation will be possible when extracting spatial objects through relative radiometric normalization.
High spatial resolution satellite image classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, the extraction of the spatial information is one of the most important steps in high resolution satellite image classification. This study proposes a new spatial feature extraction method, named SSI(Shape-Size Index). SSI uses a simple region-growing based image segmentation and allocates spatial property value in each segment. The extracted feature is integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a SVM(Support Vector Machines) classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 and QuickBird-2 data are used for experiments. It is demonstrated that proposed SSI algorithm leads to a notable increase in classification accuracy.
An, Hyowon;Kim, Changjae;Lee, Hyosung;Kwon, Wonsuk
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.6
/
pp.545-554
/
2019
This research aims to provide a building area extraction approach over the areas where data acquisition is impossible through field surveying, aerial photography and lidar scanning. Hence, high-resolution satellite images, which have high accessibility over the earth, are utilized for the automated building extraction in this study. 3D point clouds or DSM (Digital Surface Models), derived from the stereo image matching process, provides low quality of building area extraction due to their high level of noises and holes. In this regards, this research proposes a hybrid building area extraction approach which utilizes 3D point clouds (from image matching), and color and linear information (from imagery). First of all, ground and non-ground points are separated from 3D point clouds; then, the initial building hypothesis is extracted from the non-ground points. Secondly, color based building hypothesis is produced by considering the overlapping between the initial building hypothesis and the color segmentation result. Afterwards, line detection and space partitioning results are utilized to acquire the final building areas. The proposed approach shows 98.44% of correctness, 95.05% of completeness, and 1.05m of positional accuracy. Moreover, we see the possibility that the irregular shapes of building areas can be extracted through the proposed approach.
In the image processing, foreground image extraction is mainly applied to recognize a moving object or an object. In the game, the objects included in the foreground image can be mainly characters, non player characters, items, and the like. These objects can be the player's primary concern with objects that are the target of players' movement, attack, defense, and collection. In this background, this research is a study to extract players' interest areas. To this end, first, the foreground image is extracted. Second, the extracted foreground image is accumulated for a certain period of time, and the image is displayed as a result image. The accumulated foreground image according to the play time helps to know the location and frequency of screen appearance of game objects. This study can help players design their interest areas and design an efficient UX/UI.
In recognition system of the car license plate, the most important is to extract the image of the license plate from a car image. In this paper, we use ACL (Adaptive Color Luminance) algorithm to extract the license plate image from a car image. The ACL algorithm that uses color and luminance information of a car image is used to extract the image of the license plate. In this paper, color, luminance and other related information of a car image are used to extract the image of the license plate from that of a car. In this reason, we call it the ACL algorithm. The ACL algorithm uses color, luminance information and other related information of a license plate. These informations are avaliable to exact the image of the license plate. The rate of extracting the image of the license plate from a car is 97%. The experimental result of the ACL algorithm for the character region is 92%.
Journal of the Institute of Convergence Signal Processing
/
v.13
no.2
/
pp.70-76
/
2012
In this paper, an automatic extraction method of glomerulus region from human renal tissue image is presented. The important information reflecting the state of kidneys richly included in the glomeruli, so it should be the first step to extract the glomerulus region from the renal tissue image for the further quantitative analysis of the renal condition. Especially, there is no clear difference between the glomerulus and other tissues, so the glomerulus region can not be easily extracted from its background by the existing segmentation methods. The outer edge of a glomerulus region is regarded as a common property for the regions of this kind ; a two- dimensional Gaussian distribution is used to convolve with an original image first and then the image is thresholded at this blurred image ; a closed curve corresponding to the outer edge can be obtained by usual pattern processing skills like thinning, branch-cutting, hole-filling etc., Finally, the glomerulus region can be obtained by extracting the area in the original image surrounded by the closed curve. The glomerulus regions are correctly extracted by 85 percentages and experimental results show the proposed method is effective.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.