• Title/Summary/Keyword: Image detection systems

Search Result 1,121, Processing Time 0.025 seconds

A Comprehensive Study on Key Components of Grayscale-based Deepfake Detection

  • Seok Bin Son;Seong Hee Park;Youn Kyu Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2230-2252
    • /
    • 2024
  • Advances in deep learning technology have enabled the generation of more realistic deepfakes, which not only endanger individuals' identities but also exploit vulnerabilities in face recognition systems. The majority of existing deepfake detection methods have primarily focused on RGB-based analysis, offering unreliable performance in terms of detection accuracy and time. To address the issue, a grayscale-based deepfake detection method has recently been proposed. This method significantly reduces detection time while providing comparable accuracy to RGB-based methods. However, despite its significant effectiveness, the "key components" that directly affect the performance of grayscale-based deepfake detection have not been systematically analyzed. In this paper, we target three key components: RGB-to-grayscale conversion method, brightness level in grayscale, and resolution level in grayscale. To analyze their impacts on the performance of grayscale-based deepfake detection, we conducted comprehensive evaluations, including component-wise analysis and comparative analysis using real-world datasets. For each key component, we quantitatively analyzed its characteristics' performance and identified differences between them. Moreover, we successfully verified the effectiveness of an optimal combination of the key components by comparing it with existing deepfake detection methods.

Secured Telemedicine Using Whole Image as Watermark with Tamper Localization and Recovery Capabilities

  • Badshah, Gran;Liew, Siau-Chuin;Zain, Jasni Mohamad;Ali, Mushtaq
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.601-615
    • /
    • 2015
  • Region of interest (ROI) is the most informative part of a medical image and mostly has been used as a major part of watermark. Various shapes ROIs selection have been reported in region-based watermarking techniques. In region-based watermarking schemes an image region of non-interest (RONI) is the second important part of the image and is used mostly for watermark encapsulation. In online healthcare systems the ROI wrong selection by missing some important portions of the image to be part of ROI can create problem at the destination. This paper discusses the complete medical image availability in original at destination using the whole image as a watermark for authentication, tamper localization and lossless recovery (WITALLOR). The WITALLOR watermarking scheme ensures the complete image security without of ROI selection at the source point as compared to the other region-based watermarking techniques. The complete image is compressed using the Lempel-Ziv-Welch (LZW) lossless compression technique to get the watermark in reduced number of bits. Bits reduction occurs to a number that can be completely encapsulated into image. The watermark is randomly encapsulated at the least significant bits (LSBs) of the image without caring of the ROI and RONI to keep the image perceptual degradation negligible. After communication, the watermark is retrieved, decompressed and used for authentication of the whole image, tamper detection, localization and lossless recovery. WITALLOR scheme is capable of any number of tampers detection and recovery at any part of the image. The complete authentic image gives the opportunity to conduct an image based analysis of medical problem without restriction to a fixed ROI.

Face Detection Based on Thick Feature Edges and Neural Networks

  • Lee, Young-Sook;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1692-1699
    • /
    • 2004
  • Many researchers have developed various techniques for detection of human faces in ordinary still images. Face detection is the first imperative step of human face recognition systems. The two main problems of human face detection are how to cutoff the running time and how to reduce the number of false positives. In this paper, we present frontal and near-frontal face detection algorithm in still gray images using a thick edge image and neural network. We have devised a new filter that gets the thick edge image. Our overall scheme for face detection consists of two main phases. In the first phase we describe how to create the thick edge image using the filter and search for face candidates using a whole face detector. It is very helpful in removing plenty of windows with non-faces. The second phase verifies for detecting human faces using component-based eye detectors and the whole face detector. The experimental results show that our algorithm can reduce the running time and the number of false positives.

  • PDF

High-Speed Satellite Detection in High-Resolution Image Using Image Processing (영상 처리를 이용한 고해상도 영상 내 위성의 고속 검출)

  • Shin, Seunghyeok;Lee, Jongmin;Lee, Sangwook;Yang, Taeseok;Kim, Whoi-Yul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.427-435
    • /
    • 2018
  • Many countries are trying to deploy satellite surveillance systems for their national defense, and one of these system uses optical systems to observe the satellites above their territories. The optical satellite surveillance system requires the coordinates of the satellites in an acquired image and expects that those coordinates to be delivered to the tracking system. The proposed method detects the satellite sources in a high-resolution image with fast image processing for the optical surveillance system. To achieve faster detection, the proposed method reduces the size of the original image and approximates the trajectory of a satellite, so image processing methods are only applied to the nearby area of the approximated trajectory in the original image. The proposed method shows the similar detection performance faster than the previous method.

Image Objects Detection Method for the Embedded System (임베디드 시스템을 위한 영상객체의 검출방법)

  • Kim, Yun-Il;Rho, Seung-Ryong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.420-425
    • /
    • 2009
  • In this paper, image detection and recognition algorithms are studied with respect to embedded carrier system. There are many suggested techniques to detect and recognize objects. But they have the propensity to need much calculation for high hit rate. Advanced and modified method needs to study for embedded systems that low power consumption and real time response are requested. The proposed methods were implemented using Intel(R) Open Source Computer Vision Library provided by Intel Corporation. And they run and tested on embedded system using a ARM920T processor by cross-compiling. They showed 1.6sec response time and 95% hit rate and supported the automated moving carrier system smoothly.

Change Detection in Bitemporal Remote Sensing Images by using Feature Fusion and Fuzzy C-Means

  • Wang, Xin;Huang, Jing;Chu, Yanli;Shi, Aiye;Xu, Lizhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1714-1729
    • /
    • 2018
  • Change detection of remote sensing images is a profound challenge in the field of remote sensing image analysis. This paper proposes a novel change detection method for bitemporal remote sensing images based on feature fusion and fuzzy c-means (FCM). Different from the state-of-the-art methods that mainly utilize a single image feature for difference image construction, the proposed method investigates the fusion of multiple image features for the task. The subsequent problem is regarded as the difference image classification problem, where a modified fuzzy c-means approach is proposed to analyze the difference image. The proposed method has been validated on real bitemporal remote sensing data sets. Experimental results confirmed the effectiveness of the proposed method.

Active Contour Model Based Object Contour Detection Using Genetic Algorithm with Wavelet Based Image Preprocessing

  • Mun, Kyeong-Jun;Kang, Hyeon-Tae;Lee, Hwa-Seok;Yoon, Yoo-Sool;Lee, Chang-Moon;Park, June-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.100-106
    • /
    • 2004
  • In this paper, we present a novel, rapid approach for the detection of brain tumors and deformity boundaries in medical images using a genetic algorithm with wavelet based preprocessing. The contour detection problem is formulated as an optimization process that seeks the contour of the object in a manner of minimizing an energy function based on an active contour model. The brain tumor segmentation contour, however, cannot be detected in case that a higher gradient intensity exists other than the interested brain tumor and deformities. Our method for discerning brain tumors and deformities from unwanted adjacent tissues is proposed. The proposed method can be used in medical image analysis because the exact contour of the brain tumor and deformities is followed by precise diagnosis of the deformities.

An Edge Detection Method for Gray Scale Images Based on their Fuzzy System Representation

  • Moon, Byung-Soo;Lee, Hyun-Chul;Kim, Jang-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.283-286
    • /
    • 2001
  • Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose convolution kernel is different from the known kernels such as those of Roberts', Prewitt's or Sobel's gradient. Our fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the gradient and the Laplacian operator. We show that the gradient at grid points can be evaluated by taking the convolution of the image with a 3 3 kernel. We also show that our gradient coupled with the approximate value of the continuous function generates an edge detection method which creates edge images clearer than those by other methods. A few examples of applying our methods are included.

  • PDF

Implementation of Effective Automatic Foreground Motion Detection Using Color Information

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.131-140
    • /
    • 2017
  • As video equipments such as CCTV are used for various purposes in fields of society, digital video data processing technology such as automatic motion detection is essential. In this paper, we proposed and implemented a more stable and accurate motion detection system based on background subtraction technique. We could improve the accuracy and stability of motion detection over existing methods by efficiently processing color information of digital image data. We divided the procedure of color information processing into each components of color information : brightness component, color component of color information and merge them. We can process each component's characteristics with maximum consideration. Our color information processing provides more efficient color information in motion detection than the existing methods. We improved the success rate of motion detection by our background update process that analyzed the characteristics of the moving background in the natural environment and reflected it to the background image.

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.