• Title/Summary/Keyword: Image Translation

Search Result 319, Processing Time 0.03 seconds

FPGA Implementation of Extreme Contour Point Algorithm to detect rotated angle of High Definition Image (고해상 영상의 회전된 각도를 검출하기 위한 Extreme Contour Point 알고리즘의 FPGA 설계)

  • Jeong, Min-woo;Pack, Chan-su;Kim, Hi-Seok
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.344-350
    • /
    • 2016
  • In this Paper, we propose an optimized method of hardware design based on Field Programmable Gate Array (FPGA) to detect rotated angle of high definition image about Extreme Contour Point (ECP) algorithm with moving video image could be not happened to translation motion, but also physical rotation motion. It was evaluated by XC7Z020 xc7z020-3clg400 FPGA board by using xilinx 14.2 tool. The much well-known method, the Coordinate Rotation Digital Integrated Computation (CORDIC) is an algorithm to estimate rotated angle between point and point. Through the result both ECP and CORDIC, our proposed design are confirmed to have similar operating speed of about 4ns with CORDIC. However, it is verified to have high performance result in terms of the hardware cost, is much better than CORDIC with cost reduction of registers and Look Up Tables (LUTs) of 108% and 91%, respectively.

An Efficient Method to Extract the Micro-Motion Parameter of the Missile Using the Time-Frequency Image (시간-주파수 영상을 이용한 효과적인 미사일 미세운동 변수 추출 방법)

  • Choi, In-O;Kim, Si-Ho;Jung, Joo-Ho;Kim, Kyung-Tae;Park, Sang-Hong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.557-565
    • /
    • 2016
  • It is very difficult to intercept the missiles because of the small radar cross-section and the high maneuverability. In addition, due to the decoy with the similar motion parameters, additional features other than those of the translation motion parameters need to be developed. In this paper, for the successful recognition of missiles, we propose an efficient method to extract micro-motion parameters and scatterers of the missile engaged in the micro motion. The proposed method extracts motion parameters and scatterers by using the matching score between the modeled micro-Doppler function and the time-frequency binary image as a cost function. Simulation results using a target composed of the point scatterer show the parameters and the scatterers were accurately extracted.

A study on correlation-based fingerprint recognition method (광학적 상관관계를 기반으로 하는 지문인식 방법에 관한 연구)

  • 김상백;주성현;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.493-500
    • /
    • 2002
  • Fingerprint recognition is concerned with fingerprint acquisition and matching. Our research was focused on a fingerprint matching method using an inkless fingerprint input sensor at the fingerprint acquisition step. Since an inkless fingerprint sensor produces a digital-image-processed fingerprint image, we did not consider noise that can happen while acquiring the fingerprint. And making the user attempt fingerprint input as random, we considered image distortion that translation and rotation are included as complex. NJTC algorithm is used for fingerprint identification and verification. The method to find the center of the fingerprint is added in the NJTC algorithm to supplement discrimination of fingerprint recognition. From this center point, we decided the optimum cropping size for effective matching with pixels and demonstrated that the proposed method has high discrimination and high efficiency.

A Fingerprint Identification System using Large Database (대용량 DB를 사용한 지문인식 시스템)

  • Cha, Jeong-Hee;Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.203-211
    • /
    • 2005
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps; preprocessing, classification, and matching, in the classification. we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

The Body Appreciation Scale-2: Validation of a Korean version among older adults (The Body Appreciation Scale-2의 노인 남녀 대상 한국어 타당성 검증 연구)

  • Minsun Lee
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.3
    • /
    • pp.277-295
    • /
    • 2023
  • The Body Appreciation Scale-2 (BAS-2) measures the extent to which individuals feel, accept, and respond to their own bodies in a positive manner. Given the research need to explore positive body image and its associations with various sociocultural factors and related consequences among individuals with various cultural backgrounds, several studies have established the psychometric properties and factor structures of the BAS-2 in different languages and samples with different characteristics. The current study investigated the psychometric properties and measurement invariance of a Korean version of the BAS-2 in an older Korean adult population (599 older Korean adults with the average age of 70 years). Data were collected using both online and offline (paper-based) survey questionnaires. The results of exploratory factor analyses and confirmatory factor analysis evidenced the unidimensional factor structure and measurement invariance of the Korean BAS-2 among older Korean men and women, after dropping item 1. Scalar invariance was supported across gender, and men and women did not significantly differ in observed mean scores of the Korean BAS-2. The results also supported good convergent validity and criterion validity. Incremental validity was demonstrated by predicting self-esteem over and above measures of age, BMI, subjective financial and health status, body esteem, and ageism. High internal reliability and test-retest reliability over a 2-week period were confirmed. Overall, the results of this study support the reliable use of a Korean BAS-2 to measure positive body image among older Koreans after excluding item 1.

Sign Language Dataset Built from S. Korean Government Briefing on COVID-19 (대한민국 정부의 코로나 19 브리핑을 기반으로 구축된 수어 데이터셋 연구)

  • Sim, Hohyun;Sung, Horyeol;Lee, Seungjae;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.325-330
    • /
    • 2022
  • This paper conducts the collection and experiment of datasets for deep learning research on sign language such as sign language recognition, sign language translation, and sign language segmentation for Korean sign language. There exist difficulties for deep learning research of sign language. First, it is difficult to recognize sign languages since they contain multiple modalities including hand movements, hand directions, and facial expressions. Second, it is the absence of training data to conduct deep learning research. Currently, KETI dataset is the only known dataset for Korean sign language for deep learning. Sign language datasets for deep learning research are classified into two categories: Isolated sign language and Continuous sign language. Although several foreign sign language datasets have been collected over time. they are also insufficient for deep learning research of sign language. Therefore, we attempted to collect a large-scale Korean sign language dataset and evaluate it using a baseline model named TSPNet which has the performance of SOTA in the field of sign language translation. The collected dataset consists of a total of 11,402 image and text. Our experimental result with the baseline model using the dataset shows BLEU-4 score 3.63, which would be used as a basic performance of a baseline model for Korean sign language dataset. We hope that our experience of collecting Korean sign language dataset helps facilitate further research directions on Korean sign language.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

A Object-Based Image Retrieval Using Feature Analysis and Fractal Dimension (특징 분석과 프랙탈 차원을 이용한 객체 기반 영상검색)

  • 이정봉;박장춘
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.173-186
    • /
    • 2004
  • This paper proposed the content-based retrieval system as a method for performing image retrieval through the effective feature extraction of the object of significant meaning based on the characteristics of man's visual system. To allow the object region of interest to be primarily detected, the region, being comparatively large size, greatly different from the background color and located in the middle of the image, was judged as the major object with a meaning. To get the original features of the image, the cumulative sum of tile declination difference vector the segment of the object contour had and the signature of the bipartite object were extracted and used in the form of being applied to the rotation of the object and the change of the size after partition of the total length of the object contour of the image into the normalized segment. Starting with this form feature, it was possible to make a retrieval robust to any change in translation, rotation and scaling by combining information on the texture sample, color and eccentricity and measuring the degree of similarity. It responded less sensitively to the phenomenon of distortion of the object feature due to the partial change or damage of the region. Also, the method of imposing a different weight of similarity on the image feature based on the relationship of complexity between measured objects using the fractal dimension by the Boxing-Counting Dimension minimized the wrong retrieval and showed more efficient retrieval rate.

  • PDF

Setting Up a CR Based Filmless Environment for the Radiation Oncology (CR 시스템을 이용한 방사선 종양학과의 Filmless 환경 구축)

  • Kim, Dong-Young;Lee, Ji-Hae;Kim, Myung-Soo;Ha, Bo-Ram;Lee, Cheon-Hee;Kim, So-Yeong;Ahn, So-Hyun;Lee, Re-Na
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • The analog image based system consisted of a simulator and medical linear accelerator (LINAC) for radiotherapy was upgraded to digital medical image based system by exchanging the X-ray film with Computed Radiography (CR). With minimum equipments shift and similar treatment process, it was possible that the new digital image system was adapted by the users in short time. The film cassette and the film developer device were substituted with a CR cassette and a CR Reader, where the ViewBox was replaced with a small size PC and a monitor. The viewer software suitable for radiotherapy was developed to maximize the benefit of digital image, and as the result the convenience and the effectiveness was improved. It has two windows to display two different images in the same time and equipped various search capability, contouring, window leveling, image resizing, translation, rotation and registration functions. In order to avoid any discontinuance of the treatment while the transition to digital image, the film and the CR was used together for 1 week, and then the film developer was removed. Since then the CR System has been operated stably for 2 months, and the various requests from users have been reflected to improve the system.

Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis

  • Chenggong Yan;Jie Lin;Haixia Li;Jun Xu;Tianjing Zhang;Hao Chen;Henry C. Woodruff;Guangyao Wu;Siqi Zhang;Yikai Xu;Philippe Lambin
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.983-993
    • /
    • 2021
  • Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.