• Title/Summary/Keyword: Image Similarity

Search Result 1,063, Processing Time 0.025 seconds

Collaborative Similarity Metric Learning for Semantic Image Annotation and Retrieval

  • Wang, Bin;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1252-1271
    • /
    • 2013
  • Automatic image annotation has become an increasingly important research topic owing to its key role in image retrieval. Simultaneously, it is highly challenging when facing to large-scale dataset with large variance. Practical approaches generally rely on similarity measures defined over images and multi-label prediction methods. More specifically, those approaches usually 1) leverage similarity measures predefined or learned by optimizing for ranking or annotation, which might be not adaptive enough to datasets; and 2) predict labels separately without taking the correlation of labels into account. In this paper, we propose a method for image annotation through collaborative similarity metric learning from dataset and modeling the label correlation of the dataset. The similarity metric is learned by simultaneously optimizing the 1) image ranking using structural SVM (SSVM), and 2) image annotation using correlated label propagation, with respect to the similarity metric. The learned similarity metric, fully exploiting the available information of datasets, would improve the two collaborative components, ranking and annotation, and sequentially the retrieval system itself. We evaluated the proposed method on Corel5k, Corel30k and EspGame databases. The results for annotation and retrieval show the competitive performance of the proposed method.

A Similarity Ranking Algorithm for Image Databases (이미지 데이터베이스 유사도 순위 매김 알고리즘)

  • Cha, Guang-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.366-373
    • /
    • 2009
  • In this paper, we propose a similarity search algorithm for image databases. One of the central problems regarding content-based image retrieval (CBIR) is the semantic gap between the low-level features computed automatically from images and the human interpretation of image content. Many search algorithms used in CBIR have used the Minkowski metric (or $L_p$-norm) to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information. Our new search algorithm tackles this problem by employing new similarity measures and ranking strategies that reflect the nonlinearity of human perception and contextual information. Our search algorithm yields superior experimental results on a real handwritten digit image database and demonstrates its effectiveness.

Patent Document Similarity Based on Image Analysis Using the SIFT-Algorithm and OCR-Text

  • Park, Jeong Beom;Mandl, Thomas;Kim, Do Wan
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.70-79
    • /
    • 2017
  • Images are an important element in patents and many experts use images to analyze a patent or to check differences between patents. However, there is little research on image analysis for patents partly because image processing is an advanced technology and typically patent images consist of visual parts as well as of text and numbers. This study suggests two methods for using image processing; the Scale Invariant Feature Transform(SIFT) algorithm and Optical Character Recognition(OCR). The first method which works with SIFT uses image feature points. Through feature matching, it can be applied to calculate the similarity between documents containing these images. And in the second method, OCR is used to extract text from the images. By using numbers which are extracted from an image, it is possible to extract the corresponding related text within the text passages. Subsequently, document similarity can be calculated based on the extracted text. Through comparing the suggested methods and an existing method based only on text for calculating the similarity, the feasibility is achieved. Additionally, the correlation between both the similarity measures is low which shows that they capture different aspects of the patent content.

A New Class of Similarity Measures for Fuzzy Sets

  • Omran Saleh;Hassaballah M.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.100-104
    • /
    • 2006
  • Fuzzy techniques can be applied in many domains of computer vision community. The definition of an adequate similarity measure for measuring the similarity between fuzzy sets is of great importance in the field of image processing, image retrieval and pattern recognition. This paper proposes a new class of the similarity measures. The properties, sensitivity and effectiveness of the proposed measures are investigated and tested on real data. Experimental results show that these similarity measures can provide a useful way for measuring the similarity between fuzzy sets.

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.

Learning Free Energy Kernel for Image Retrieval

  • Wang, Cungang;Wang, Bin;Zheng, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2895-2912
    • /
    • 2014
  • Content-based image retrieval has been the most important technique for managing huge amount of images. The fundamental yet highly challenging problem in this field is how to measure the content-level similarity based on the low-level image features. The primary difficulties lie in the great variance within images, e.g. background, illumination, viewpoint and pose. Intuitively, an ideal similarity measure should be able to adapt the data distribution, discover and highlight the content-level information, and be robust to those variances. Motivated by these observations, we in this paper propose a probabilistic similarity learning approach. We first model the distribution of low-level image features and derive the free energy kernel (FEK), i.e., similarity measure, based on the distribution. Then, we propose a learning approach for the derived kernel, under the criterion that the kernel outputs high similarity for those images sharing the same class labels and output low similarity for those without the same label. The advantages of the proposed approach, in comparison with previous approaches, are threefold. (1) With the ability inherited from probabilistic models, the similarity measure can well adapt to data distribution. (2) Benefitting from the content-level hidden variables within the probabilistic models, the similarity measure is able to capture content-level cues. (3) It fully exploits class label in the supervised learning procedure. The proposed approach is extensively evaluated on two well-known databases. It achieves highly competitive performance on most experiments, which validates its advantages.

Learning Discriminative Fisher Kernel for Image Retrieval

  • Wang, Bin;Li, Xiong;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.522-538
    • /
    • 2013
  • Content based image retrieval has become an increasingly important research topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The retrieval systems rely on a key component, the predefined or learned similarity measures over images. We note that, the similarity measures can be potential improved if the data distribution information is exploited using a more sophisticated way. In this paper, we propose a similarity measure learning approach for image retrieval. The similarity measure, so called Fisher kernel, is derived from the probabilistic distribution of images and is the function over observed data, hidden variable and model parameters, where the hidden variables encode high level information which are powerful in discrimination and are failed to be exploited in previous methods. We further propose a discriminative learning method for the similarity measure, i.e., encouraging the learned similarity to take a large value for a pair of images with the same label and to take a small value for a pair of images with distinct labels. The learned similarity measure, fully exploiting the data distribution, is well adapted to dataset and would improve the retrieval system. We evaluate the proposed method on Corel-1000, Corel5k, Caltech101 and MIRFlickr 25,000 databases. The results show the competitive performance of the proposed method.

Brain MR Multimodal Medical Image Registration Based on Image Segmentation and Symmetric Self-similarity

  • Yang, Zhenzhen;Kuang, Nan;Yang, Yongpeng;Kang, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1167-1187
    • /
    • 2020
  • With the development of medical imaging technology, image registration has been widely used in the field of disease diagnosis. The registration between different modal images of brain magnetic resonance (MR) is particularly important for the diagnosis of brain diseases. However, previous registration methods don't take advantage of the prior knowledge of bilateral brain symmetry. Moreover, the difference in gray scale information of different modal images increases the difficulty of registration. In this paper, a multimodal medical image registration method based on image segmentation and symmetric self-similarity is proposed. This method uses modal independent self-similar information and modal consistency information to register images. More particularly, we propose two novel symmetric self-similarity constraint operators to constrain the segmented medical images and convert each modal medical image into a unified modal for multimodal image registration. The experimental results show that the proposed method can effectively reduce the error rate of brain MR multimodal medical image registration with rotation and translation transformations (average 0.43mm and 0.60mm) respectively, whose accuracy is better compared to state-of-the-art image registration methods.

An Efficient Image Matching Scheme Based on Min-Max Similarity for Distorted Images (왜곡 영상을 위한 효과적인 최소-최대 유사도(Min-Max Similarity) 기반의 영상 정합 알고리즘)

  • Heo, Young-Jin;Jeong, Da-Mi;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1404-1414
    • /
    • 2019
  • Educational books commonly use some copyrighted images with various kinds of deformation for helping students understanding. When using several copyrighted images made by merging or editing distortion in legal, we need to pay a charge to original copyright holders for each image. In this paper, we propose an efficient matching algorithm by separating each copyrighted image with the merged and edited type including rotation, illumination change, and change of size. We use the Oriented FAST and Rotated BRIEF (ORB) method as a basic feature matching scheme. To improve the matching accuracy, we design a new MIN-MAX similarity in matching stage. With the distorted dataset, the proposed method shows up-to 97% of precision in experiments. Also, we demonstrate that the proposed similarity measure also outperforms compared to other measure which is commonly used.

Noise-tolerant Image Restoration with Similarity-learned Fuzzy Association Memory

  • Park, Choong Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.51-55
    • /
    • 2020
  • In this paper, an improved FAM is proposed by adopting similarity learning in the existing FAM (Fuzzy Associative Memory) used in image restoration. Image restoration refers to the recovery of the latent clean image from its noise-corrupted version. In serious application like face recognition, this process should be noise-tolerant, robust, fast, and scalable. The existing FAM is a simple single layered neural network that can be applied to this domain with its robust fuzzy control but has low capacity problem in real world applications. That similarity measure is implied to the connection strength of the FAM structure to minimize the root mean square error between the recovered and the original image. The efficacy of the proposed algorithm is verified with significant low error magnitude from random noise in our experiment.