• Title/Summary/Keyword: Image Set Segmentation

Search Result 195, Processing Time 0.026 seconds

Content based Video Segmentation Algorithm using Comparison of Pattern Similarity (장면의 유사도 패턴 비교를 이용한 내용기반 동영상 분할 알고리즘)

  • Won, In-Su;Cho, Ju-Hee;Na, Sang-Il;Jin, Ju-Kyong;Jeong, Jae-Hyup;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1252-1261
    • /
    • 2011
  • In this paper, we propose the comparison method of pattern similarity for video segmentation algorithm. The shot boundary type is categorized as 2 types, abrupt change and gradual change. The representative examples of gradual change are dissolve, fade-in, fade-out or wipe transition. The proposed method consider the problem to detect shot boundary as 2-class problem. We concentrated if the shot boundary event happens or not. It is essential to define similarity between frames for shot boundary detection. We proposed 2 similarity measures, within similarity and between similarity. The within similarity is defined by feature comparison between frames belong to same shot. The between similarity is defined by feature comparison between frames belong to different scene. Finally we calculated the statistical patterns comparison between the within similarity and between similarity. Because this measure is robust to flash light or object movement, our proposed algorithm make contribution towards reducing false positive rate. We employed color histogram and mean of sub-block on frame image as frame feature. We performed the experimental evaluation with video dataset including set of TREC-2001 and TREC-2002. The proposed algorithm shows the performance, 91.84% recall and 86.43% precision in experimental circumstance.

Studies of Automatic Dental Cavity Detection System as an Auxiliary Tool for Diagnosis of Dental Caries in Digital X-ray Image (디지털 X-선 영상을 통한 치아우식증 진단 보조 시스템으로써 치아 와동 자동 검출 프로그램 연구)

  • Huh, Jangyong;Nam, Haewon;Kim, Juhae;Park, Jiman;Shin, Sukyoung;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.52-58
    • /
    • 2015
  • The automated dental cavity detection program for a new concept intra-oral dental x-ray imaging device, an auxiliary diagnosis system, which is able to assist a dentist to identify dental caries in an early stage and to make an accurate diagnosis, was to be developed. The primary theory of the automatic dental cavity detection program is divided into two algorithms; one is an image segmentation skill to discriminate between a dental cavity and a normal tooth and the other is a computational method to analyze feature of an tooth image and take an advantage of it for detection of dental cavities. In the present study, it is, first, evaluated how accurately the DRLSE (Direct Regularized Level Set Evolution) method extracts demarcation surrounding the dental cavity. In order to evaluate the ability of the developed algorithm to automatically detect dental cavities, 7 tooth phantoms from incisor to molar were fabricated which contained a various form of cavities. Then, dental cavities in the tooth phantom images were analyzed with the developed algorithm. Except for two cavities whose contours were identified partially, the contours of 12 cavities were correctly discriminated by the automated dental caries detection program, which, consequently, proved the practical feasibility of the automatic dental lesion detection algorithm. However, an efficient and enhanced algorithm is required for its application to the actual dental diagnosis since shapes or conditions of the dental caries are different between individuals and complicated. In the future, the automatic dental cavity detection system will be improved adding pattern recognition or machine learning based algorithm which can deal with information of tooth status.

Rate-Distortion Based Segmentation of Tumor Region in an Breast Ultrasound Volume Image (유방 초음파 볼륨영상에서의 율왜곡 기반 종양영역 분할)

  • Kwak, Jong-In;Kim, Sang-Hyun;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.51-58
    • /
    • 2005
  • This paper proposes an efficient algorithm for extracting a tumor region from an breast ultrasound volume image by using rate-distortion (R-D) based seeded region growing. In the proposed algorithm the rate and the distortion represent the roughness of the contour and the dissimilarity of pixels in a region, respectively. Staring from an initial seed region set in each cutting plane of a volume, a pair of the seed region and one of adjacent regions whose R-D cost is minimal is searched and then they are merged into a new updated seed region. This procedure is recursively performed until the averaged R-D cost values per the number of contour pixels in the seed region becomes maxim. As a result, the final seed region has good pixel homogeneity and a much smooth contour. Finally, the tumor volume is extracted using the contours of the final seed regions in all the cutting planes. Experimental results show that the averaged error rate of the proposed method is shown to be below 4%.

A Study on a Design for the Korean Coast Guard Uniform (한국 해양경찰복제 디자인 연구)

  • Lee, Jae-Jung;Kim, Youn-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.61 no.5
    • /
    • pp.1-20
    • /
    • 2011
  • As a follow-up of a study on design strategies to improve Korea's Korean coast guarduniforms, this study set out to propose Korean coast guard uniforms of a new concept that would meet the changing needs of the times and match the advanced technology and work environments. Three concepts of classical, nautical and techno chic were identified from the design strategies of the previous study. Using the results from a prototype show and preference survey, the investigator divided items into design, color, material, and detail and reflects demands for each of them. As a result, design was examined in four aspects of identity, acknowledgement, unity, and practicality and focused its improvement factors on design differentiated from other organizations' uniforms including ground police, segmentation of size system, adjustment of the length of upper garment to consider activity, and changes to the lines and silhouette to give out a modern image. As for color, the focus was placed on differentiated colors from other organizations' uniforms including ground police through dark blue and ocean color, change toward colors that reflect environmental characteristics, and unity in colors between the summer and winter uniform. As for material, the focus of improvement was put on elasticity, resistance against contamination, warmth retention, texture, wearing sensation, and functionality by taking into account convenience for field workers on coast guard vessels and branch offices who have much time in contact with ocean environments in order to make the materials high-grade. As for detail, structural details were added to give out a modern image such as changing the detail lines, efficiency of storage space, buttons, sleeve hems, ironing lines, and neck collars by taking into account environmental characteristics. The significance of the study lies in that it proposed a development model for large-scale uniform copy design by establishing copy design that secures functionality and is proper for an organization's social and cultural environment.

A Vehicle Detection Algorithm for a Lane Change (차선 변경을 위한 차량 탐색 알고리즘)

  • Ji, Eui-Kyung;Han, Min-Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.98-105
    • /
    • 2007
  • In this paper, we propose the method and system which determines the condition for safe and unsafe lane changing. To determine the condition, first, the system sets up the Region of Interest(ROI) on the neighboring lane. Second, a dangerous vehicle is extracted during the line changing. Third, the condition is determined to wm or not by calculating the moving direction, relative distance md relative velocity. To set up the ROI, the only one side lane is detected and the interested region is expanded. Using the coordinate transformation method, the accuracy of the ROI raised. To correctly extract the vehicle on the neighboring lane, the Adaptive Background Update method and Image Segmentation method which uses the feature of the travelling road are used. The object which is extracted by the dangerous vehicle is calculated the relative distance, the relative velocity and the moving average. And then in order to ring, the direction of the vehicle and the condition for safe and unsafe is determined. As minimizes the interested region and uses the feature of the travelling road, the computational quantity is reduced and the accuracy is raised and a stable result on a travelling road images which demands a high speed calculation is showed.

  • PDF

Density map estimation based on deep-learning for pest control drone optimization (드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정)

  • Baek-gyeom Seong;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Hyun Ho Woo;Hunsuk Lee;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.

A Study on Effective Moving Object Segmentation and Fast Tracking Algorithm (효율적인 이동물체 분할과 고속 추적 알고리즘에 관한 연구)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.359-368
    • /
    • 2002
  • In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.

Automated Functional Morphology Measurement Using Cardiac SPECT Images (SPECT 영상을 사용한 기능적 심근형태의 자동 계측법 개발)

  • Choi, Seok-Yoon;Ko, Seong-Jin;Kang, Se-Sik;Kim, Chang-Soo;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.133-139
    • /
    • 2012
  • For the examination of nuclear medicine, myocardial scan is a good method to evaluate a hemodynamic importance of coronary heart disease. but, the automatized qualitative measurement is additionally necessary to improve the decoding efficiency. we suggests the creation of cardiac three-dimensional model and model of three-dimensional cardiac thickness as a new measurement. For the experiment, cardiac reduced cross section was obtained from SPECT. Next, the pre-process was performed and image segmentation was fulfilled by level set. for the modeling of left cardiac thickness, it was realized by applying difference equation of two-dimensional laplace equation. As the result of experiment, it was successful to measure internal wall and external wall and three-dimensional modeling was realized by coordinate. and, with laplace formula, it was successful to develop the thickness of cardiac wall. through the three-dimensional model, defects were observed easily and position of lesion was grasped rapidly by the revolution of model. The model which was developed as the support index of decoding will provide decoding information to doctor additionally and reduce the rate of false diagnosis as well as play a great role for diagnosing IHD early.

4-Dimensional dose evaluation using deformable image registration in respiratory gated radiotherapy for lung cancer (폐암의 호흡동조방사선치료 시 변형영상정합을 이용한 4차원 선량평가)

  • Um, Ki Cheon;Yoo, Soon Mi;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.83-95
    • /
    • 2018
  • Purpose : After planning the Respiratory Gated Radiotherapy for Lung cancer, the movement and volume change of sparing normal structures nearby target are not often considered during dose evaluation. This study carried out 4-D dose evaluation which reflects the movement of normal structures at certain phase of Respiratory Gated Radiotherapy, by using Deformable Image Registration that is well used for Adaptive Radiotherapy. Moreover, the study discussed the need of analysis and established some recommendations, regarding the normal structures's movement and volume change due to Patient's breathing pattern during evaluation of treatment plans. Materials and methods : The subjects were taken from 10 lung cancer patients who received Respiratory Gated Radiotherapy. Using Eclipse(Ver 13.6 Varian, USA), the structures seen in the top phase of CT image was equally set via Propagation or Segmentation Wizard menu, and the structure's movement and volume were analyzed by Center-to Center method. Also, image from each phase and the dose distribution were deformed into top phase CT image, for 4-dimensional dose evaluation, via VELOCITY Program. Also, Using $QUASAR^{TM}$ Phantom(Modus Medical Devices) and $GAFCHROMIC^{TM}$ EBT3 Film(Ashland, USA), verification carried out 4-D dose distribution for 4-D gamma pass rate. Result : The movement of the Inspiration and expiration phase was the most significant in axial direction of right lung, as $0.989{\pm}0.34cm$, and was the least significant in lateral direction of spinal cord, as -0.001 cm. The volume of right lung showed the greatest rate of change as 33.5 %. The maximal and minimal difference in PTV Conformity Index and Homogeneity Index between 3-dimensional dose evaluation and 4-dimensional dose evaluation, was 0.076, 0.021 and 0.011, 0.0 respectfully. The difference of 0.0045~2.76 % was determined in normal structures, using 4-D dose evaluation. 4-D gamma pass rate of every patients passed reference of 95 % gamma pass rate. Conclusion : PTV Conformity Index was more significant in all patients using 4-D dose evaluation, but no significant difference was observed between two dose evaluations for Homogeneity Index. 4-D dose distribution was shown more homogeneous dose compared to 3D dose distribution, by considering the movement from breathing which helps to fill out the PTV margin area. There was difference of 0.004~2.76 % in 4D evaluation of normal structure, and there was significant difference between two evaluation methods in all normal structures, except spinal cord. This study shows that normal structures could be underestimated by 3-D dose evaluation. Therefore, 4-D dose evaluation with Deformable Image Registration will be considered when the dose change is expected in normal structures due to patient's breathing pattern. 4-D dose evaluation with Deformable Image Registration is considered to be a more realistic dose evaluation method by reflecting the movement of normal structures from patient's breathing pattern.

  • PDF

Liver Splitting Using 2 Points for Liver Graft Volumetry (간 이식편의 체적 예측을 위한 2점 이용 간 분리)

  • Seo, Jeong-Joo;Park, Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.123-126
    • /
    • 2012
  • This paper proposed a method to separate a liver into left and right liver lobes for simple and exact volumetry of the river graft at abdominal MDCT(Multi-Detector Computed Tomography) image before the living donor liver transplantation. A medical team can evaluate an accurate river graft with minimized interaction between the team and a system using this algorithm for ensuring donor's and recipient's safe. On the image of segmented liver, 2 points(PMHV: a point in Middle Hepatic Vein and PPV: a point at the beginning of right branch of Portal Vein) are selected to separate a liver into left and right liver lobes. Middle hepatic vein is automatically segmented using PMHV, and the cutting line is decided on the basis of segmented Middle Hepatic Vein. A liver is separated on connecting the cutting line and PPV. The volume and ratio of the river graft are estimated. The volume estimated using 2 points are compared with a manual volume that diagnostic radiologist processed and estimated and the weight measured during surgery to support proof of exact volume. The mean ${\pm}$ standard deviation of the differences between the actual weights and the estimated volumes was $162.38cm^3{\pm}124.39$ in the case of manual segmentation and $107.69cm^3{\pm}97.24$ in the case of 2 points method. The correlation coefficient between the actual weight and the manually estimated volume is 0.79, and the correlation coefficient between the actual weight and the volume estimated using 2 points is 0.87. After selection the 2 points, the time involved in separation a liver into left and right river lobe and volumetry of them is measured for confirmation that the algorithm can be used on real time during surgery. The mean ${\pm}$ standard deviation of the process time is $57.28sec{\pm}32.81$ per 1 data set ($149.17pages{\pm}55.92$).