• Title/Summary/Keyword: Image Rendering

Search Result 544, Processing Time 0.034 seconds

Haptic Rendering based on Real-time Video of Deformable Bodies using Snakes Algorithm (스네이크 알고리즘을 이용한 실시간 영상기반 변형체의 햅틱 렌더링)

  • Kim, Young-Jin;Kim, Jung-Sik;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.58-63
    • /
    • 2007
  • 본 논문은 현미경이나 카메라 영상 등의 실시간 영상을 이용한 변형체(deformable object)의 햅틱 렌더링을 구현하는 방법에 관한 것이다. 이는 저속으로 변형하는 물체의 영상정보를 실시간으로 추출하여, 그에 대한 영상처리를 통해 변형과 이동에 대한 위치 정보를 제공함으로써 이루어진다. 물체에 변형이 가해지면 카메라를 통해 컴퓨터로 그 영상이 전송되며 얻어진 영상은 스네이크 알고리즘의 영상처리 과정을 거쳐 이차원 모델 구현을 위한 위치정보를 제공한다. 이 가상모델에 대한 햅틱 렌더링을 구현하여 햅틱장치에 힘 피드백을 주게 되며, 안정적인 햅틱 렌더링의 구현을 위해 보간법(interpolation) 및 보외법(extrapolation)을 적용하여 모델과 햅틱장치간의 샘플링 문제를 해결한다. 그래픽 렌더링 또한 구현하여 조작의 용이함을 제공한다.

  • PDF

Real-Time Optical Flow Rendering (실시간 영상 생성을 위한 광학 흐름 요소 렌더링)

  • Park, Tae-Joon;Lee, Seungyong;Shin, Sung Yong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.2
    • /
    • pp.15-28
    • /
    • 1998
  • 최근 영상 기반 렌더링(image-based rendering)을 위한 새로운 접근방법으로서 광학 흐름 요소 렌더링(optical flow rendering)이 제안되었다. 이 방법은 좌우 영상 대응(stereo matching)에서 발생하는 오류와 무관하게 고품질의 영상을 생성할 수 있고 깊이 정보 비교를 통해 기존의 렌더링 방법으로 생성한 영상과 광학 흐름 요소로부터 생성한 영상을 합성할 수 있는 반면에, 한 화소 당 하나 이상의 광학 흐름 요소를 필요로하기 때문에 연산량이 많아져 영상 생성이 느려지는 단점이 있었다. 본 논문에서는 실시간 영상 생성을 위한 광학 흐름 요소 구성법과 영상 생성법을 제안한다. 각각의 광학 흐름 요소가 영상 내에서 화소들의 구간에 대응되도록 개선하여 전체 광학 흐름 요소의 수를 줄였으며, 필터링 탐색법 (filtering search)을 적용하여 전체 광학 흐름 요소를 모두 탐색하는 대신 실제로 영상 생성에 사용되는 광학 흐름 요소만을 탐색함으로써 전체 연산량을 크게 줄였다. 제안된 방법을 SGI Indigo2 Impact 워크스테이션(R10000 CPU; 128 Mbytes)상에서 구현한 결과, 초당 10장 이상의 고속 영상 생성이 가능했다.

  • PDF

Intra-picture Block-matching Method for Codebook-based Texture Compression

  • Cui, Li;Jang, Euee S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5063-5073
    • /
    • 2016
  • In this paper, an efficient texture compression method is proposed for fast rendering, which exploits the spatial correlation among blocks through intra-picture block matching. Texture mapping is widely used to enhance the visual quality of results in real-time rendering applications. For fast texture mapping, it is necessary to identify an effective trade-off between compression efficiency and computational complexity. The conventional compression methods utilized for image processing (e.g., JPEG) provide high compression efficiency while resulting in high complexity. Thus, low complexity methods, such as ETC1, are often used in real-time rendering applications. Although these methods can achieve low complexity, the compression efficiency is still lower than that of JPEG. To solve this problem, we propose a texture compression method by reducing the spatial redundancy between blocks in order to achieve the better compression performance than ETC1 while maintaining complexity that is lower than that of JPEG. Experimental results show that the proposed method achieves better compression efficiency than ETC1, and the decoding time is significantly reduced compared to JPEG while similar to ETC1.

Fast Ray Reordering and Approximate Sibson Interpolation for Foveated Rendering on GPU

  • Kwon, Oh-Seok;park, Keon-kuk;Yoon, Joseph;Kim, Young-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.311-321
    • /
    • 2019
  • Virtual reality applications in Head-Mounted Displays require high frame rates and low latency rendering techniques. Ray tracing offers many benefits, such as high-quality image generation, but has not been utilized due to lower performance than rasterization. But that can obtain good result combined with gaze-tracking technology and human visual system's operation principle. In this paper, we propose a method to optimize the foveated sampling map and to maintain the visual quality through the fast voronoi nearest interpolation. The proposed method further reduces the computational cost that has been improved by the previous foveated sampling. It also smoothes the voronoi boundary using adaptive sibson interpolation, which was not possible in real-time. As a result, the proposed method can render real-time high-quality images with low visual difference.

Simple optical microscope using Light Field Rendering technology (Light Field Rendering 기술을 이용한 간이 광학현미경)

  • Kim, Da-Hee;Cho, Joong-Hwee
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.725-728
    • /
    • 2020
  • Light Field Rendering 을 이용하여 성능이 떨어지는 Low resolution 카메라 장비로 얻는 영상의 한계를 극복하고, Image Processing 기술로 직접 조정해야 해결할 수 있는 수차 및 성능 문제 해결한다. 저가형 장비, 렌즈를 사용하여도 컴퓨터기반 처리를 이용하여 물리적인 한계를 극복한 간이 광학현미경을 만들고자 함. 3D print 를 이용한 뼈대구조를 만들고, 저렴한 raspberry pi 임베디드 플랫폼을 이용하여 설계도만 있다면, 누구나 쉽게 만들 수 있기에 많은 사람들이 이 분야에 더 쉽게 다가설 수 있게 한다.

A Study on Stroke Based Rendering Using Painting Media Profile (페인팅 매체 프로파일을 이용한 스트로크 기반 렌더링에 관한 연구)

  • Seo, Sang-Hyun;Yoon, Kyung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1640-1651
    • /
    • 2009
  • In this paper we introduce a new approach to stroke based rendering using brush stroke profile. Our proposed method, based on image retrieval method, is a simple but flexible and scalable method to create various painting styles, for which scalable database constructed with the collection of real stroke data is used. Input image is reproduced with combinations of brush stoke in the database, when a search process to determinate appropriate brush stroke and a judgment process to decide whether to draw the retrieved brush stroke on the canvas or not are presented. In addition, this paper suggests a new brush stroke model and a depiction technique in order to utilize effective height information which allows natural texture depiction, or good visual effect, without carrying out physical simulation. Our method is able to create diverse variations of painting by controling various user parameters. It also provides scalable framework that can produce various painting styles with different artistic media by changing the stroke combinations of stroke database.

  • PDF

Real-time Volume Rendering using Point-Primitive (포인트 프리미티브를 이용한 실시간 볼륨 렌더링 기법)

  • Kang, Dong-Soo;Shin, Byeong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1229-1237
    • /
    • 2011
  • The volume ray-casting method is one of the direct volume rendering methods that produces high-quality images as well as manipulates semi-transparent object. Although the volume ray-casting method produces high-quality image by sampling in the region of interest, its rendering speed is slow since the color acquisition process is complicated for repetitive memory reference and accumulation of sample values. Recently, the GPU-based acceleration techniques are introduced. However, they require pre-processing or additional memory. In this paper, we propose efficient point-primitive based method to overcome complicated computation of GPU ray-casting. It presents semi-transparent objects, however it does not require preprocessing and additional memory. Our method is fast since it generates point-primitives from volume dataset during sampling process and it projects the primitives onto the image plane. Also, our method can easily cope with OTF change because we can add or delete point-primitive in real-time.

Hole-filling Based on Disparity Map for DIBR

  • Liu, Ran;Xie, Hui;Tian, Fengchun;Wu, Yingjian;Tai, Guoqin;Tan, Yingchun;Tan, Weimin;Li, Bole;Chen, Hengxin;Ge, Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2663-2678
    • /
    • 2012
  • Due to sharp depth transition, big holes may be found in the novel view that is synthesized by depth-image-based rendering (DIBR). A hole-filling method based on disparity map is proposed. One important aspect of the method is that the disparity map of destination image is used for hole-filling, instead of the depth image of reference image. Firstly, the big hole detection based on disparity map is conducted, and the start point and the end point of the hole are recorded. Then foreground pixels and background pixels are distinguished for hole-dilating according to disparity map, so that areas with matching errors can be determined and eliminated. In addition, parallaxes of pixels in the area with holes and matching errors are changed to new values. Finally, holes are filled with background pixels from reference image according to these new parallaxes. Experimental results show that the quality of the new view after hole-filling is quite well; and geometric distortions are avoided in destination image, in contrast to the virtual view generated by depth-smoothing methods and image inpainting methods. Moreover, this method is easy for hardware implementation.

Real-Time Hierarchical Techniques for Rendering of Translucent Materials and Screen-Space Interpolation (반투명 재질의 렌더링과 화면 보간을 위한 실시간 계층화 알고리즘)

  • Ki, Hyun-Woo;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.7 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • In the natural world, most materials such as skin, marble and cloth are translucent. Their appearance is smooth and soft compared with metals or mirrors. In this paper, we propose a new GPU based hierarchical rendering technique for translucent materials, based on the dipole diffusion approximation, at interactive rates. Information of incident light, position, normal, and irradiance, on the surfaces are stored into 2D textures by rendering from a primary light view. Huge numbers of pixel photons are clustered into quad-tree image pyramids. Each pixel, we select clusters (sets of photons), and then we approximate multiple subsurface scattering term with the clusters. We also introduce a novel hierarchical screen-space interpolation technique by exploiting spatial coherence with early-z culling on the GPU. We also build image pyramids of the screen using mipmap and pixel shader. Each pixel of the pyramids is stores position, normal and spatial similarity of children pixels. If a pixel's the similarity is high, we render the pixel and interpolate the pixel to multiple pixels. Result images show that our method can interactively render deformable translucent objects by approximating hundreds of thousand photons with only hundreds clusters without any preprocessing. We use an image-space approach for entire process on the GPU, thus our method is less dependent to scene complexity.

  • PDF

Sensibility Evaluation of Color Temperature and Rendering Index to the LED-Based White Illumination (LED 기반 백색 조명의 색온도 및 연색지수에 따른 감성 평가)

  • Jee, Soon-Duk;Choi, Kyoung-Jae;Kim, Ho-Kun;Lee, Sang-Hyuk
    • Science of Emotion and Sensibility
    • /
    • v.9 no.4
    • /
    • pp.353-366
    • /
    • 2006
  • The aim of this study is to characterize the optical properties of white light-emitting diodes lighting modules and then to evaluate the sensitivity of students and teachers in reacting to the optical properties of these modules. For the sake of this study, each of 5 lighting modules was introduced to the 5 test cabinets. The 5 test cabinets were evaluated and analyzed the student and teacher's sensitivity reaction. We have selected If questions on sensitivity of the lighting and evaluated these questions with semantic differential method. To verify the reliability and objectivity of the questions, the feasibility survey was carried out by a preliminary test. As a result of the test, the sensitivities on the test cabinets were classified the 4 factors, namely, activity as the first factor, stability as the second one , potency as the third one and sensitive image as the fourth one respectively. By the evaluation of student and teacher's sensitivity on the correlated color temperature, they preferred the cabinet with the higher color temperature in view of the activity and potency. And they preferred the cabinet with the lower color temperature in view of the stability factor. In the sensitive image, they preferred the 5800K, bluish white lighting regardless of the color temperature. By the evaluation on the color rendering index, they preferred the cabinet with the higher color rendering index in view of the activity, stability and sensitive image. In the potency factor, they preferred the white lighting with the middle color rendering index.

  • PDF