
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, Oct. 2016                                          5063 
Copyright ⓒ2016 KSII 

Intra-picture Block-matching Method for 
Codebook-based Texture Compression 

 
Li Cui1 and Euee S. Jang2 

1 Department of Computer & Software, Hanyang University 
Seoul, Republic of Korea;  

and Department of Computer Science & Technology, Yanbian University 
Yanji, China; 

[e-mail: Lcui2000@gmail.com] 
2 Department of Computer & Software, Hanyang University 

Seoul, Republic of Korea 
[e-mail: esjang@hanyang.ac.kr] 

*Corresponding author: Euee S. Jang 
 

Received March 30, 2016; revised August 5, 2016; accepted September 18, 2016;   
published October 31, 2016 

 

 

Abstract 
 

In this paper, an efficient texture compression method is proposed for fast rendering, which 
exploits the spatial correlation among blocks through intra-picture block matching. Texture 
mapping is widely used to enhance the visual quality of results in real-time rendering 
applications. For fast texture mapping, it is necessary to identify an effective trade-off between 
compression efficiency and computational complexity. The conventional compression 
methods utilized for image processing (e.g., JPEG) provide high compression efficiency while 
resulting in high complexity. Thus, low complexity methods, such as ETC1, are often used in 
real-time rendering applications. Although these methods can achieve low complexity, the 
compression efficiency is still lower than that of JPEG. To solve this problem, we propose a 
texture compression method by reducing the spatial redundancy between blocks in order to 
achieve the better compression performance than ETC1 while maintaining complexity that is 
lower than that of JPEG. Experimental results show that the proposed method achieves better 
compression efficiency than ETC1, and the decoding time is significantly reduced compared 
to JPEG while similar to ETC1. 
 
 
Keywords: texture compression, spatial correlation, vector quantization, codebook 

This research was supported by the International Research & Development Program of the National Research 
Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning 
(2015K1A3A1A21000259). 
 
http://dx.doi.org/10.3837/tiis.2016.10.023                                                                                                          ISSN : 1976-7277 

mailto:t.m.chen@swansea.ac.uk


5064                                                               Cui et al.: Intra-picture block-matching method for codebook-based texture compresssion 

1. Introduction 

Texture compression is widely used in real-time rendering applications to reduce the size of 
texture images while decreasing rendering performance. Many compression methods have 
been proposed for images, most of which are mainly employed for compression for either 
storage or transmission. However, it is necessary for a texture compression system to allow 
fast random access to texture data. Conventional compression methods, such as JPEG, are not 
usually utilized for texture compression, because it is computationally expensive to perform 
random access decoding. Moreover, JPEG produces variable length codes for entropy coding, 
which results in a large portion of the texture image being required for decoding a texture 
pixel. 
Several texture compression methods to address random access during rendering time have 
been proposed, which can be classified into: 1) block-based methods; and 2) vector 
quantization (VQ)-based methods. Block-based compression methods have constituted a 
frequent area of research [1]-[7]. S3 Texture Compression (S3TC) (called DXTC in DirectX) 
is a local palette technique, which uses 4×4 or 8×8 pixel blocks and achieves four bits per pixel 
(bpp) [2]. Jacob et al. proposed Ericsson Texture Compression (ETC), and claimed that it can 
simplify hardware implementation by compressing 2×4 pixel blocks into 32 bits per block [3]. 
An extension of ETC (called ETC1) is proposed, which splits a texture into 4×4 pixel blocks 
[4]. And ETC2 adds three nodes to handle chrominance edges better than ETC1 [5]. ETC1 and 
ETC2 can provide better quality than S3TC and PVRTC at the cost of a decrease of 
compression ratio, which are fixed-rates methods. Moreover, several block-based methods 
have been proposed to provide alternative formats that allow variable bit-rate texture 
compression [6][7]. Although low complexity is achieved by these schemes, their 
compression efficiency is less than that of JPEG. A challenging task of block-based methods is 
identifying a proper trade-off between compression efficiency and computational complexity 
for fast rendering. VQ-based methods have been proposed by several researchers [8][9]. For 
example, Beers et al. first proposed that VQ can be applied to texture compression because 
textures usually contain many repeating patterns [9]. Texture color tables based on VQ are 
also efficiently employed for hardware-assisted decoding of vector components in [10]. And 
Yi Xiao et al. used self-orgnizing map algorithm to construct large color palette based on VQ 
for HDR texture compression [11]. We observe that most of the VQ-based methods are based 
on the color palette as a form of VQ, but exploiting the similarity between blocks has rarely 
been considered to form a VQ codebook for texture compression. 

The block-matching algorithm (BMA) has long been utilized in numerous fields. It is used 
to find the closest block among a set of blocks by comparing the given block with blocks 
within a given search range. BMA is commonly employed to estimate motion vectors for the 
improvement of inter-frame coding performance in video coding. Moreover, BMA can also be 
applied for intra-frame coding. Intra-block copy (IntraBC) as a BMA for intra-frames has been 
recently adopted into the extension of High Efficiency Video Coding (HEVC) for 
screen-content coding [12]-[14]. The HEVC encoder requires low computational complexity 
for real-time applications, which differentiates it from the texture encoder. Thus, IntraBC 
exploits spatial redundancy within a specified search range. 

In the present paper, we propose an efficient texture compression method to exploit the 
spatial correlation between blocks by using the intra-picture block-matching method. In the 
proposed method, the blocks in the original texture image are characterized by a small set of 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016                                   5065 

selected blocks (called a codebook) based on the distortion measured by the block-matching 
method. In order to take advantage of the spatial correlation of blocks in the proposed method, 
high compression efficiency is expected for the texture images maintaining high similarities 
among blocks. 

The rest of the paper is organized as follows. In section 2, we formulate the posed problem 
in a mathematical manner. Section 3 presents the proposed codebook-based texture 
compression method in detail. Experimental results and comparisons with other conventional 
methods are presented in section 4. Finally, conclusions are drawn in section 5. 

2. Problem definition 
Let us assume that there are N blocks per texture image, and M blocks among them are 
chosen to represent N blocks. If we use the fewer blocks (i.e., M<N), the total bit cost 
based on M (CTotal) is smaller than that of the original design by using N blocks. Thus, the 
relationship between M and CTotal is as follows: 

    𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑀𝑀 × 𝑉𝑉                                                    (1) 
 

where V indicates the average number of bits used in a block. Equation (1) implies that 
minimizing M can achieve low CTotal at the cost of high distortion of replaced blocks. Thus, 
the total distortion between the replaced blocks and the original blocks (DTotal) has to be 
considered to estimate the total bit cost. This relationship can be described using the 
Lagrange equation of cost (E) based on M and D as follows: 

𝐸𝐸 = 𝑀𝑀 × 𝑉𝑉 + 𝑘𝑘𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇                                           (2) 
 

where k is a Lagrange multiplier. The optimal selection of M is a combinatorial problem 
which is NP-complete. As the number of N increases, it is very difficult to obtain an 
optimal solution in a reasonable computation time. For practical applications, we need an 
efficient heuristic method to find an approximate solution. To this end, an acceptable 
threshold (Th) is defined as a limitation for the distortion of each block (P). While 𝑃𝑃 ≤ 𝑇𝑇ℎ, 
the optimal selection of M is given by minimizing DTotal, defined as: 
 

𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = argmin
𝑖𝑖∈[1,𝑁𝑁]

𝐸𝐸(𝑖𝑖) ≈ argmin
𝑖𝑖∈[1,𝑁𝑁]

𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑖𝑖) 

𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑀𝑀) = �𝑆𝑆𝑖𝑖

𝑀𝑀

𝑖𝑖=1

𝑃𝑃𝑖𝑖 

 
subject to the following constraints: 

∑ 𝑆𝑆𝑖𝑖𝑀𝑀
𝑖𝑖=1 = 𝑁𝑁and 𝑃𝑃𝑖𝑖 ≤ 𝑇𝑇ℎ                                           (3) 

where Si is the number of blocks replaced by the i-th selected block; and Pi indicates the 
distortion between the ith selected block and the replaced block at the corresponding 
position. The minimum of DTotal can be achieved through comparing the distortions 
among the different combinations of M blocks. Thus, the minimum of the total cost (Emin) 
based on Moptimal is given by: 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑉𝑉 + 𝑘𝑘 ∑ 𝑆𝑆𝑖𝑖
𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖=1 𝑃𝑃𝑖𝑖                                     (4)  



5066                                                               Cui et al.: Intra-picture block-matching method for codebook-based texture compresssion 

 

3. Proposed method 
To achieve high compression efficiency while maintaining acceptable complexity, we propose 
a texture compression method to reduce the spatial redundancy between blocks by using the 
block-matching method. The proposed block-matching method is utilized to compute the 
distortions (P) on a block-by-block basis and to measure the spatial correlation among blocks 
by comparing their distortions with an acceptable threshold (Th). In order to obtain the local 
minimum of DTotal as given in Equation (4), a heuristic process, termed the block-pattern (BP) 
decision process, is performed. A high-level block diagram of the proposed method is given in 
Fig. 1. 
 

 
(a) Encoder 

 

 
(b) Decoder 

Fig. 1. Block diagram of the proposed method 

 

3.1. Encoding process 
As shown in Fig. 1 (a), the encoding process of the proposed approach can be summarized in 
the following three steps. In the first step, the pixel-level similarity between each block and the 
rest of the encoded blocks is measured through the intra-picture block-matching process. All 
of the blocks are then characterized by a small set of the conventional blocks using VQ based 
on the results of the previous step. Thus, the BP of each block is determined. BP indicates that 
the corresponding block is encoded by the conventional method or replaced by its index. 
Finally, a codebook for the blocks of the original texture image is generated by following the 
results of the block-matching and BP decision processes. 
 
A. Block-matching process 
To exploit the spatial correlation among blocks, the intra-picture block-matching process for 
each block is proposed to measure the distortion between blocks. The flow chart of the 
intra-picture block-matching process is presented in Fig. 2. 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016                                   5067 

 
Fig. 2. Flow chart of the block-matching process 

 
After an input texture image that consists of N blocks (b0…bN-1) is loaded, the 

block-matching process begins by measuring the distortion (Pj) between the current block and 
the other reference block, and it is compared with a specified Th. The similarity score of the 
current block (Sj) indicates the number of blocks whose distortions are lower than Th. As the 
result of the block-matching process, those blocks having Sj larger than 1 can be used to 
replace corresponding blocks. Thus, a small set of blocks (the number of blocks being defined 
as M) is generalized by removing those replaced blocks. M blocks are used to approximately 
represent the original texture image, and the total distortion (DTotal) compared with the original 
image can be described as: 



5068                                                               Cui et al.: Intra-picture block-matching method for codebook-based texture compresssion 

 

𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇|𝑇𝑇ℎ = 𝑆𝑆0𝑃𝑃0 + 𝑆𝑆1𝑃𝑃1 + 𝑆𝑆2𝑃𝑃2 + ⋯+ 𝑆𝑆𝑀𝑀−1𝑃𝑃𝑀𝑀−1,     M ≤ N               (5)  
 

As the proposed block-matching process determines M blocks from the original N blocks 
according to Th, it is possible to find a sub-optimal solution based on the small set of blocks. 
 
B. BP decision 
As described in Equation (3), it is necessary to find a sub-optimal M to achieve the local 
minimizing DTotal based on the small set of blocks determined by the block-matching process. 
Thus, the BP decision process is performed to obtain the optimal M value. This process 
determines each block as the one to be encoded by using the conventional compression 
method, or as the one to be replaced by the index of the corresponding block. The encoded 
block based on BP is comprised of two types: 1) the independent block (IB), that is encoded by 
using the conventional compression method; and 2) the repetition block (RB), that is to be 
replaced by one of the IBs.  

The BP decision process is performed based on the results of the block-matching process. 
First, the block maintaining the highest similarity score has the highest spatial correlation with 
other blocks. Thus, the block is determined as IB, and its index is used to replace those RBs 
associated with it. Next, those blocks whose patterns have been determined are excluded from 
the following decision process. Finally, the previous process is iteratively performed until the 
BPs of all blocks are determined. 

 
C. Codebook structure 
After the BPs of all blocks are determined for an input texture image, a codebook is generated 
to represent the necessary attributes for each block. As shown in Fig. 3, the codebook is 
formed by N codewords. The codeword for IB is represented by a Boolean value for BP (bp). 
The codeword for RB includes not only its bp value, but also the index value of the IB being 
used to replace it. The range of the index value for the ith block is between zero and the sum of 
IBs up to the (i-1)th block. The index value is encoded using a variable length code, whose bit 
length is computed based on the sum of IBs. 

 
Fig. 3. Example of codebook design based on the proposed method 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016                                   5069 

It can be seen from Fig. 3 that the total length of the codebook (Scodebook) has a linear 
relationship with M as follows: 

𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁 + ∑ (𝑝𝑝𝑗𝑗 × log2 𝑎𝑎𝑗𝑗𝑁𝑁−1
𝑗𝑗=0 )                                      (6) 

 
where pj is the bp value of the jth block; and aj indicates the number of IBs counted from the 
first block to the (j-1)th block, and the maximum of aj is M-1. If the jth block is RB, pj is 1; thus, 
the bit length of the corresponding index data is computed based on aj. Otherwise, the jth block 
is IB, and the length of the corresponding index is zero for pj = 0. 
 
D. Encoded result 
The encoded result of each texture image includes a codebook and an encoded bitstream, as 
shown in Fig. 4. Scodebook has been defined in Equation (6). The size of the header part in the 
bitstream is small, which is compared with the length of the IB part; thus, the bits per pixel (R) 
is defined as follows: 

𝑅𝑅 =  𝑀𝑀×𝑏𝑏+𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑤𝑤×ℎ

                                                        (7) 
where b represents the number of bits for each IB; and w×h is the resolution of the texture 
image. 

 
Fig. 4. Bitstream structure of the proposed method 

 
R is calculated from Equation (7) with M=N, which is slightly increased compared with that 

of the conventional method (N×b/w/h). Nevertheless, we can pre-compute the critical value of 
M based on Equations (6) and (7) in order to achieve an acceptable R. For example, b is 64 bits 
when ETC1 is used as the conventional compression method. And the texture image is a 
512×512 24-bit RGB color image as well as N is 16384. Thus, the critical value of M is 16168, 
which is computed based on Equation (7). This means that R can be lower than 4 bpp (the bits 
per pixel by using ETC1), while M is lower than 16168. In summary, as more blocks are 
determined as RBs, a higher compression ratio can be achieved.  

3.2. Decoding process 

The decoding process of the proposed method aims to decode the corresponding block pixel 
based on the codebook, which can be summarized as a three-step process as shown in Fig. 1 
(b). In the first step, the encoded codebook is reconstructed and stored in memory. Then, the 
encoded conventional blocks are decoded by using the conventional compression method. 
Finally, the decoded blocks are combined into the output texture image based on the decoded 
codebook. 

Based on the bitstream structure of proposed method shown in Fig. 4, we observe that 
computation complexity may be slightly increased by accessing the codebook. A linear 
relationship is defined between the decoding time of the proposed method (Tp) and the 
decoding time of the conventional compression method (Tc), as denoted as follows: 

𝑇𝑇𝑐𝑐 =  𝑀𝑀𝑡𝑡 + 𝐵𝐵𝑡𝑡 
𝑇𝑇𝑝𝑝 = 𝑀𝑀𝑓𝑓 + 𝑇𝑇𝑐𝑐                                                           (8) 



5070                                                               Cui et al.: Intra-picture block-matching method for codebook-based texture compresssion 

where Mt represents the time of memory access for blocks; Bt is the time consumed by 
decoding blocks; and Mf represents the time of the memory access for BP and the index data of 
the blocks from the codebook. Tp is slightly increased compared to Tc because of Mf. 

4. Experimental results 

4.1 Test conditions 
To investigate the performance of the proposed method, we used ETC1 as the compression 
method and implemented our proposed method based on [15]. Fig. 5 shows the six 512×512 
24-bit RGB color images used in our experiment, which include three natural images (i.e., 
Lena, Airplane, and Pepper), as well as three texture images (i.e., Obese, RedWood, and 
WoodTile). In the block-matching process, the thresholds are set to be seven different points in 
order to discern the tendency of performance change based on the different mean squared error 
(MSE) values. 
 

 
Fig. 5. Six test images 

4.2 Experimental results and analysis 
The first experiment is carried out to evaluate the rate distortion and decoding time 
performance of the proposed method used for the test images.  As shown in Table 1, the RD 
performance of the proposed method is compared with that of the ETC1 method. The bitrate of 
the images containing more spatial redundancy (Airplane, RedWood, and WoodTile) is 
reduced faster than that of the other images while retaining good quality. Therefore, it can be 
concluded that the proposed method can reduce the bitrate of non-complex images faster than 
that of complex images. Fig. 6 shows two examples of compressed texture images, which 
shows how much the proposed method affects the quality by using different thresholds. 
Texture images compressed by ETC1 and the proposed method based on thresholds as 200 and 
400 are provided as well as the original cutouts of the compressed textures and the block maps. 
The original cutout is 40×40 24-bit RGB color image for Lena and 20×20 24-bit RGB color 
image for Airplane. The block map tells which blocks are replaced in the proposed method 
using different colors. The black color means that the corresponding block is not replaced. The 
yellow color indicates that the corresponding block is replaced as well as the red, but the red 
means the difference is more than the yellow.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016                                   5071 

In Table 2, the average decoding time of the six test images to be decoded 300 times by the 
proposed method is compared with that of JPEG and ETC1. To address the random access of 
texture data, JPEG has to decode a region of an image through decoding the whole image due 
to the DCT transform applied. The decoding time of JPEG is the block number times of the 
time to decode the whole image when the random access is conducted. Thus, it is obvious that 
the results of JPEG are much larger than those of ETC1 and the proposed method. The 
decoding time of the proposed method is almost similar to that of ETC1, which is consistent 
with that of Equation (8). 

The second experiment is to evaluate the quality of the rendered model by using texture 
image. For texture compression method, Griffin et al. reported that the performance evaluation 
by using final rendered images matches how human perceive image distortions [11]. Thus, we 
rendered a 3D Model – ObeseMale by using the Obese test image. The viewpoint space for the 
single-object models in [16] is sampled by using the quasi-random Sobol sequence generator, 
but finding the expected viewer locations is left for future work. To capture the object model 
as clearly as possible, we fix the Y-coordinate of the viewpoints as an acceptable value. In the 
XZ-plane, the viewpoint space is uniformly sampled into ten viewpoints to form a set of 
evaluation viewpoints. The rendered results using the compressed Obese test image are 
captured at each viewpoint, and they are compared each to a ground truth using the 
uncompressed Obese test image from the same viewpoint. The average PSNR, CIE94 and 
RMS performance are measured as shown in Table 3. The results show that the texture images 
in the rendering stage can achieve better quality compared with that of the texture images 
shown in Table 1. This implies that the bitrate of the compression methods can be reduced 
while still maintaining the rendered quality. 
 

Table 1. Comparison of PSNR and bpp between the proposed method and ETC1. 

Method Th Lena Pepper Airplane Obese RedWood WoodTile 
PSNR bpp PSNR bpp PSNR bpp PSNR bpp PSNR bpp PSNR bpp 

ETC1  34.75 4.00 31.23 4.00 34.39 4.00 40.36 4.00 39.13 4.00 41.02 4.00 

Proposed 

50 34.69 3.95 30.76 4.04 34.00 3.06 39.91 3.21 39.13 4.06 40.04 3.89 
100 34.51 3.68 30.72 3.96 33.86 2.66 39.44 2.93 39.02 4.01 39.59 3.31 
200 33.97 3.07 30.55 3.63 33.62 2.28 38.34 2.50 37.05 3.18 37.25 2.16 
400 33.11 2.27 30.14 2.93 33.20 1.98 36.17 2.02 37.05 3.18 37.25 2.16 
800 31.70 1.66 28.88 2.07 32.03 1.64 33.58 1.60 37.05 3.18 37.25 2.16 

2000 28.75 1.16 27.30 1.35 29.41 1.20 30.33 1.13 37.05 3.18 37.25 2.16 
5000 25.33 0.77 24.47 0.95 26.43 0.79 25.77 0.81 37.05 3.18 37.25 2.16 

 
Original cutout            ETC1           Proposed           block map           Proposed           block map 

                                                      (Th=200)            (Th=200)            (Th=800)             (Th=800)        
 Fig. 6. Two examples of the proposed method applied to Lena (Top) and Airplane (Bottom)  



5072                                                               Cui et al.: Intra-picture block-matching method for codebook-based texture compresssion 

 
Table 2. Comparison of average decoding time. 

Method Decoding Time (ms) 
JPEG 7.17×104 
ETC1 1.79 

Proposed 2 
 

Table 3. Average Color difference Comparison of the rendered results for ObeseMale. 
Method Th PSNR CIE94 (%) RMS 
ETC1  43.08 9.64 3.11 

Proposed 

50 42.47 9.86 3.33 
100 41.82 10.12 3.58 
200 40.52 10.72 4.16 
400 35.87 12.67 7.26 
800 35.69 14.18 8.89 

2000 32.11 18.29 10.96 
5000 28.60 25.08 16.41 

5. Conclusion 
This paper presents a codebook-based texture coding method that exploits the spatial 
redundancy between blocks. The experimental results demonstrate that the proposed method 
can achieve a flexible bitrate based on specified thresholds. Furthermore, an effective trade-off 
between compression ratio and computational complexity can be preserved by the proposed 
method, compared to that of the conventional compression method. To improve our proposed 
approach, further investigation can be conducted to determine an appropriate threshold value 
for all textures in general. And the different quality metrics may be considered to compute the 
difference error between blocks.  

References 
[1] S. Fenny, “Texture Compression Using Low-frequency Signal Modulation,” in Proc. of ACM 

SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 84-91, Switzerland, 2003. 
Article (CrossRef Link). 

[2] S3TC DirectX 6.0 Standard Texture compression, White paper, S3 Corp.  Article (CrossRef Link). 
[3] J. Ström, and T. Akenine- Möller, “PACKMAN: Texture Compression for Mobile Phones,” in 

Proc. of ACM SIGGRAPH 2004 Sketches, pp. 66, New York USA, 2004. Article (CrossRef Link). 
[4] J. Ström, and T. Akenine- Möller, “iPACKMAN: High-Quality, Low-Complexity Texture 

Compression for Mobile Phones,” in Proc. of ACM SIGGRAPH/EUROGRAPHICS Conference on 
Graphics Hardware, pp. 63-70, Los Angeles CA, July 2005. Article (CrossRef Link). 

[5] J. Ström, and M. Pettersson, “ETC2: texture compression using invalid combinations,” in Proc. of 
the 22nd ACM SIGGRAPH/EUROGRAPHICS Symp. Graph. Hardware, pp. 49-54, 2007. 
Article (CrossRef Link). 

[6] J.Nystad, A. Lassen, A. Pomianowski, S. Ellis and T. Olson, “Adaptive Scalable Texture 
Compression,” in Proc. of the 4th ACM SIGGRAPH/Eurographics Conference on 
High-Performance Graphics. Eurographics Association, Aire-la-Ville, Switzerland, pp. 105-114, 
2012. Article (CrossRef Link). 

http://dl.acm.org/citation.cfm?id=844187
http://www.vgamuseum.info/images/tech/s3tc.pdf
http://dl.acm.org/citation.cfm?id=1186306
http://dl.acm.org/citation.cfm?id=1071877
http://www.jacobstrom.com/publications/StromPetterssonGH07.pdf
http://dl.acm.org/citation.cfm?id=2383812


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 10, October 2016                                   5073 

[7] P. Krajcevski, A. Golas, K. Ramani, M. Shebanow and D. Manocha, “VBTC: GPU-Friendly 
Variable Block Size Texture Encoding,” Computer Graphics Forum, vol. 35, pp. 409-419, 2016. 
Article (CrossRef Link). 

[8] J. Torborg., and J.T. Kajiya, “Talisman: Commodity Realtime 3D Graphics for the PC,” in Proc. of 
ACM SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series, pp. 353–364, 
Aug. 1996. Article (CrossRef Link). 

[9] A.C. Beers, M. Agrawala, and N. Chadda, “Rendering from Compressed Textures,” in Proc. of 
ACM SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Series SIGGRAPH96, 
pp. 373–378, Aug., 1996. Article (CrossRef Link). 

[10] G. Knittel, A. Schilling, A. Kugler, and W. Strasser, “Hardware for Superior Texture Performance,” 
Computers & Graphics. vol.20, no.4, pp. 475–481, July 1996.  Article (CrossRef Link). 

[11] Y. Xiao, C. S. Leung and P. M. Lam, “Self-organizing map-based color palette for high-dynamic 
range texture compression,” Neural Computing and Applications, vol.21, pp. 639-647, June 2012. 
Article (CrossRef Link). 

[12] C.C. Chen, X. Xu, R.L. Liao, W.H. Peng, S. Liu, and S. Lei, “Screen Content Coding using 
Non-square Intra Block Copy for HEVC,” IEEE International Conference on Multimedia and 
Expo (ICME), pp. 1-6, July 14-18, 2014. Article (CrossRef Link). 

[13] D. Kwon and M. Budagavi, “Fast intra block copy (IntraBC) search for HEVC screen content 
coding,” in Proc. of IEEE International Symposium on Circuits and Systems (ISCAS), pp. 9-12, 
June 1-5, 2014. Article (CrossRef Link).  

[14] K. Rapaka, C. Pang, J. Sole, M. Karczewicz, B. Li and J.Z. Xu, “Improved intra block copy and 
motion search methods for screen content coding,” in Proc. of SPIE, Applications of Digital Image 
Processing, vol. 9599, pp.14 Sep. 2015. Article (CrossRef Link). 

[15] Ericsson Labs, “Ericsson Texture Compression Tool etcpack v2.73:ETC1,” 
Article (CrossRef Link).  

[16] W. Griffin and M. Olano, “Evaluating Texture Compression Masking Effects Using Objective 
Image Quality Assessment Metrics,” IEEE Transactions on Visualization and Computer Graphics, 
vol.21, no.8 , pp. 970-979, 2015. Article (CrossRef Link).  

 
 
 
 
 
 

 

Li Cui received the B.S. degree from Yanbian University, Yanji, China in 2000 and the 
M.S. degree from Honam University, Korea in 2007. She is currently working toward a 
Ph.D. at Hanyang University, Seoul, Korea. And she is also a lecturer in the Department 
of Computer Science and Technology, College of Science and Engineering, Yanbian 
University, Yanji, China. Her current research interests include MPEG Reconfigurable 
Graphics Coding, Computer Graphics and Point Cloud Compression. 

 

Euee S. Jang received a B.S. from Jeonbuk National University, Korea and a Ph. D. 
from SUNY at Buffalo, NY, USA. He is a Professor in the Dept. of Computer Science & 
Engineering, Hanyang University, Seoul, Korea. His research interests include 
image/video coding, reconfigurable video coding, and computer graphics objects. He has 
authored more than 150 MPEG contribution papers, more than 30 journal or conference 
papers, 35 pending or accepted patents, and two book chapters. Dr. Jang has received 
three ISO/IEC Certificates of Appreciation for contributions to MPEG-4 development. 
He received the Presidential Award from the Korean Government for his contribution to 
MPEG standardization. 

 

http://dx.doi.org/10.1111/cgf.12842
http://dl.acm.org/citation.cfm?id=237274
http://dx.doi.org/10.1145/237170.237276
http://dx.doi.org/10.1016/0097-8493(96)00019-2
http://dx.doi.org/10.1007/s00521-011-0654-y
http://dx.doi.org/10.1109/icme.2014.6890229
http://dx.doi.org/10.1109/iscas.2014.6865052
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2444245
https://bitbucket.org/wolfpld/etcpak/wiki/Home
http://dx.doi.org/10.1109/TVCG.2015.2429576

