• Title/Summary/Keyword: Image Rejection Filter

Search Result 34, Processing Time 0.021 seconds

An MMIC Broadband Image Rejection Downconverter Using an InGaP/GaAs HBT Process for X-band Application

  • Lee Jei-Young;Lee Young-Ho;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • In this paper, we demonstrate a fully integrated X-band image rejection down converter, which was developed using InGaP/GaAs HBT MMIC technology, consists of two single-balanced mixers, a differential buffer amplifier, a differential YCO, an LO quadratue generator, a three-stage polyphase filter, and a differential intermediate frequency(IF) amplifier. The X-band image rejection downconverter yields an image rejection ratio of over 25 dB, a conversion gain of over 2.5 dB, and an output-referred 1-dB compression power$(P_{1dB,OUT})$ of - 10 dBm. This downconverter achieves broadband image rejection characteristics over a frequency range of 1.1 GHz with a current consumption of 60 mA from a 3-V supply.

5.25GHz Image Rejection Low Noise Amplifier and Mixer for Wireless LAN (무선랜을 위한 5.25GHz 이미지 제거 저 잡음 증폭기 및 믹서 설계)

  • Lee, Jun-Jae;Kong, Dong-Ho;Choo, Sung-Joong;Park, Jung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.893-896
    • /
    • 2005
  • This paper describes Low Noise Amplifier(LNA) and Single Balanced Mixer(SBM) with monolithic image rejection notch filter using 0.5um MESFET process. LNA, Notch filter, and SBM were integrated on a chip. This chip does not need off chip SAW filter, thereby reducing the overall cost and system volume. The LNA with Notch filter provides a gain of 15dB, noise figure of 1.2dB, and image rejection ratio of -74dB. The SBM has a conversion gain of 6dB.

  • PDF

Design of Tunable Image Rejection Filter (주파수 조절이 가능한 영상주파수 제거 여파기 구현)

  • Ha Sang-Hoon;Kim Hyeong-Seok;Han Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.208-211
    • /
    • 2006
  • In this paper, a tunable image rejection filter using two varactors is developed for mobile convergence. The filter is fabricated on a 0.25um substrate. ESD Pad is embedded to prevent damage caused by electrostatic discharge(ESD). Bias voltages are at WCDMA(2.1GHz). WiBro(2.3GHz), and WLAN(2.45) are 0.5V, 0.95V and 1.8V respectively. And the image rejection rations are more than 28dB at each band and insertion losses are less than 2dB at each band.

  • PDF

A Study on the Design of Image Rejection Interdigital-Filter(IRIF) for 5.8GHz Wireless LAN (5.8GHz 무선 LAN용 영상제거 인터디지털 필터 설계에 관한 연구)

  • 유재문;강정진;안정식
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.31-36
    • /
    • 1998
  • In this paper, Image Rejection Interdigital Filter(IRIF) for 5.8GHz wireless LAN was designed and implemented. When the input signal is -30dBm in the 4~8㎓ frequency band, the insertion loss including all kinds of loss is 6.3dB in the center frequency 5.775GHz. Therefore, it was showed practically insertion loss of about -3.3dB. Especially, image signal rejection is about -l7dB in the image frequency 6.475GHz. and skirt characteristics of the high frequency band is very excellent. Therefore, it was confirmed that the proposed IRIF is suitable for RF image signal rejection in the 5.8GHz wireless LAN system.

  • PDF

The Effect of Image Rejection Filter on Flatness of Microwave Terrestrial Receiver

  • Han, Sok-Kyun;Park, Byung-Ha
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.86-90
    • /
    • 2003
  • A flat conversion loss in microwave mixer is hard to achieve if integrating with an image rejection filter(IRF). This is due to the change of termination condition with respect to the LO and IF frequency at RF port where the filter has 50 ohm termination property only in the RF band. This paper describes a flatness maintenance in the down mixer concerning a diode matching condition as well as an electrical length of embedding line at RF port. The implemented single balance diode mixer is suitable for a 23 ㎓ European Terrestrial Radio. RF, LO and fixed IF frequency chosen in this paper are 21.2∼22.4 ㎓, 22.4∼23.6 ㎓ and 1.2 ㎓, respectively. The measured results show a conversion loss of 8.5 ㏈, flatness of 1.2 ㏈ p-p, input P1㏈ of 7㏈m, IIP3 of 15.42 ㏈m with nominal LO power level of 10㏈m. The return loss of RF and LO port are less than - 15 ㏈ and - 12 ㏈, respectively and IF port is less than - 6 ㏈. LO/RF and LO/IF isolation are 18 ㏈ and 50 ㏈, respectively. This approach would be a helpful reference for designing up/down converter possessing a filtering element.

Design and Fabrication of K-band multi-channel receiver for short-range RADAR (근거리 레이더용 K대역 다채널 전단 수신기 설계 및 제작)

  • Kim, Sang-Il;Lee, Seung-Jun;Lee, Jung-Soo;Lee, Bok-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.545-551
    • /
    • 2012
  • In this paper, K-band multi-channel receiver was designed and fabricated for low noise amplification and down conversion to L-band. The fabricated multi-channel receiver incorporates GaAs-HEMT LNA(Low noise amplifier) which provides less than a 2 dB noise figure, IR(Image Rejection) Filter for rejection of image frequency, IR(Image rejection) mixer to reject a image frequency and improve an IMD(Intermodulation Distortion) characteristic. Test results of the fabricated multi-channel receiver show less than a 3.8 dB noise figure, conversion gain of more than 27dB, and IP1dB(Input 1dB Gain Compression Point) of -9.5 dB and over.

A Fully Integrated Low-IF Receiver using Poly Phase Filter for VHF Applications (다중위상필터(Poly Phase Filter)를 이용한 VHF용 Low-IF 수신기 설계)

  • Kim, Seong-Do;Park, Dong-Woon;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.482-489
    • /
    • 2010
  • In this paper we have proposed a new architecture of DQ-IRM(Double-Quadrature Image Rejection Mixer) for image rejection in the low-IF receiver. It consist of a frequency-tunable RF PPF(Poly Phase Filter) and the quadrature mixers. The conventional DQ-IRM generates the quadrature RF signals for the RF wide band at once. But the proposed DQ-IRM with the frequency-tuable RF PPF generates the quadrature RF signals for the narrow band of 2~3 channels bandwidth, which is partitioned from the RF wide band. We designed the CMOS RF tuner for T-DMB(Terrestrial Digital Multimedia Broadcasting) with the proposed 3rd DQ-IRM using a 0.18um CMOS technology and verified the performances of the designed receiver such as the image rejection ratio, the noise figure and the power consumption. The overall NF of the RF tuner is about 1.26 dB and the image reject ratio is about 51 dB. The power consumption is 55.8 mW at 1.8 V supply voltage. The chip area is $3.0{\times}2.5mm^2$.

Optimized Optomechanical Anti-Aliasing Filter for Digital Camera Photography

  • Lee, Sang Won;Chang, Ryungkee;Moon, Sucbei
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.456-466
    • /
    • 2015
  • We investigated an anti-aliasing (AA) filter for digital camera photography by which the excessively high-frequency components of the image signal are suppressed to avoid the aliasing effect. Our optomechanical AA filter was implemented by applying rapid relative motions to the imaging sensor. By the engineered motion blur of the mechanical dithers, the effective point-spread function (PSF) of the imaging system could be tailored to reject the unwanted high-frequency components of the image. For optimal operations, we developed a spiral filter motion protocol that could produce a Gaussian-like PSF. We experimentally demonstrated that our AA filter provides an improved filtering characteristic with a better compromise of the rejection performance and the signal loss. We also found that the pass band characteristic can be enhanced further by a color-differential acquisition mode. Our filter scheme provides a useful method of digital photography for low-error image measurements as well as for ordinary photographic applications where annoying $moir{\acute{e}}$ patterns must be suppressed efficiently.

A design of single side-band filter for millimeter wave using martin-puplett interferometer (Martin-puplett 간섭계를 이용한 밀리미터파 대역의 단측파대 여파기 설계)

  • 한석태;김효령;이창훈;박종애;정현수;김광동;김태성;박동철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.98-105
    • /
    • 1996
  • The design method of 85 GHz-115 GHz band single side-band filter using the principle of martin-puplett inteferometer is described. It has been designed by this method and also manufactured and tested. From the test results, not only the ratio of image singal rejection of 19 dB is obtained, but also the theoretical and experimental results of center frequency of pass-band and rejection-band show the validity of the theory. This manufactured filter was installed on 100GHz band SiS (superconductor insulator superconductor ) receiver for observing cosmic radio waves and tested. We found that this filter can be used a single side-band as well as double side-band mode. The design method which is presented in this paper can be used a single side-band filter for a heterodyne type sub-milimeter wave receiver.

  • PDF

Wideband Tunable Semidynamic Fractional Frequency Divider MMIC (소수분주비를 갖는 광대역 가변 능동 주파수 분주기 마이크로파 집적 회로)

  • Won, Bok-Yeon;Shin, Jae-Wook;Shin, Hyun-Chol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.522-529
    • /
    • 2007
  • A semidynamic frequency divide-by-1.5 MMIC comprises a tunable polyphase filter, tunable image-rejection mixer, and a static divide-by-2 in the feedback path. Wideband suppression of unwanted tones is achieved by employing a tunable image-rejection mixer and a tunable single-stage polyphase filter. Implemented in GaInP/GaAs HBT technology, the divide-by-1.5 MMIC operates over the input frequency range of 4.5 to 9.2 GHz with better than -20 dBc suppressions of $1/3{\times}f_{in}\;and\;f_{in}$ tones, while dissipating 29 mA from 4.1 V supply.