• Title/Summary/Keyword: Image Processing Technology

Search Result 2,384, Processing Time 0.031 seconds

Comparison and analysis of spatial information measurement values of specialized software in drone triangulation (드론 삼각측량에서 전문 소프트웨어의 공간정보 정확도 비교 분석)

  • Park, Dong Joo;Choi, Yeonsung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.249-256
    • /
    • 2022
  • In the case of Drone Photogrammetry, the "pixel to point tool" module of Metashape, Pix4D Mapper, ContextCapture, and Global MapperGIS, which is a simple software, are widely used. Each SW has its own logic for the analysis of aerial triangulation, but from the user's point of view, it is necessary to select a SW by comparative analysis of the coordinate values of geospatial information for the result. Taking aerial photos for drone photogrammetry, surveying GCP reference points through VRS-GPS Survey, processing the acquired basic data using each SW to construct ortho image and DSM, and GCPSurvey performance and acquisition from each SW The coordinates (X,Y) of the center point of the GCP target on the Ortho-Image and the height value (EL) of the GCP point by DSM were compared. According to the "Public Surveying Work Regulations", the results of each SW are all within the margin of error. It turned out that there is no problem with the regulations no matter which SW is included within the scope.

Detection of the co-planar feature points in the three dimensional space (3차원 공간에서 동일 평면 상에 존재하는 특징점 검출 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.499-508
    • /
    • 2023
  • In this paper, we propose a technique to estimate the coordinates of feature points existing on a 2D planar object in the three dimensional space. The proposed method detects multiple 3D features from the image, and excludes those which are not located on the plane. The proposed technique estimates the planar homography between the planar object in the 3D space and the camera image plane, and computes back-projection error of each feature point on the planar object. Then any feature points which have large error is considered as off-plane points and are excluded from the feature estimation phase. The proposed method is archived on the basis of the planar homography without any additional sensors or optimization algorithms. In the expretiments, it was confirmed that the speed of the proposed method is more than 40 frames per second. In addition, compared to the RGB-D camera, there was no significant difference in processing speed, and it was verified that the frame rate was unaffected even in the situation that the number of detected feature points continuously increased.

Digital Camera Identification Based on Interpolation Pattern Used Lens Distortion Correction (디지털 카메라의 렌즈 왜곡 보정에 사용된 보간 패턴 추출을 통한 카메라 식별 방법)

  • Hwang, Min-Gu;Kim, Dong-Min;Har, Dong-Hwan
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.49-59
    • /
    • 2012
  • Throughout developing digital technology, reproduction of image is growing better day by day. And at the same time, diverse image editing softwares are developed to manage images easily. In the process of editing images, those programs could delete or modify EXIF files which have the original image information; therefore images without the origin source are widely spread on the web site after editing. This matter could affect analysis of images due to the distortion of originality. Especially in the court of law, the source of evidence should be expressed clearly; therefore digital image EXIF file without deletion or distortion could not be the objective evidence. In this research, we try to trace the identification of a digital camera in order to solve digital images originality, and also we focus on lens distortion correction algorism which is used in digital image processing. Lens distortion correction uses mapping algorism, and at this moment it also uses interpolation algorism to prevent aliasing artifact and reconstruction artifact. At this point interpolation shows the similar mapping pattern; therefore we want to find out the interpolation evidence. We propose a minimum filter algorism in order to detect interpolation pattern and adjust the same minimum filter coefficient in two areas; one has interpolation and the second has no interpolation. Throughout DFT, we confirm frequency character between each area. Based on this result, we make the final detection map by using differences between two areas. In other words, thereby the area which has the interpolation caused by mapping is adjusted using minimum filter for detection algorism; the second area which has no interpolation tends to different frequency character.

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image (고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구)

  • Hyeopgeon Lee;Young-Woon Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • A convolutional neural network (CNN) is a representative algorithm for implementing artificial neural networks. CNNs have improved on the issues of rapid increase in calculation amount and low object classification rates, which are associated with a conventional multi-layered fully-connected neural network (FNN). However, because of the rapid development of IT devices, the maximum resolution of images captured by current smartphone and tablet cameras has reached 108 million pixels (MP). Specifically, a traditional CNN algorithm requires a significant cost and time to learn and process simple, high-resolution images. Therefore, this study proposes an improved CNN algorithm for implementing an object classification learning model for simple, high-resolution images. The proposed method alters the adjacency matrix value of the pooling layer's max pooling operation for the CNN algorithm to reduce the high-resolution image learning model's creation time. This study implemented a learning model capable of processing 4, 8, and 12 MP high-resolution images for each altered matrix value. The performance evaluation result showed that the creation time of the learning model implemented with the proposed algorithm decreased by 36.26% for 12 MP images. Compared to the conventional model, the proposed learning model's object recognition accuracy and loss rate were less than 1%, which is within the acceptable error range. Practical verification is necessary through future studies by implementing a learning model with more varied image types and a larger amount of image data than those used in this study.

Sea Fog Level Estimation based on Maritime Digital Image for Protection of Aids to Navigation (항로표지 보호를 위한 디지털 영상기반 해무 강도 측정 알고리즘)

  • Ryu, Eun-Ji;Lee, Hyo-Chan;Cho, Sung-Yoon;Kwon, Ki-Won;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.25-32
    • /
    • 2021
  • In line with future changes in the marine environment, Aids to Navigation has been used in various fields and their use is increasing. The term "Aids to Navigation" means an aid to navigation prescribed by Ordinance of the Ministry of Oceans and Fisheries which shows navigating ships the position and direction of the ships, position of obstacles, etc. through lights, shapes, colors, sound, radio waves, etc. Also now the use of Aids to Navigation is transforming into a means of identifying and recording the marine weather environment by mounting various sensors and cameras. However, Aids to Navigation are mainly lost due to collisions with ships, and in particular, safety accidents occur because of poor observation visibility due to sea fog. The inflow of sea fog poses risks to ports and sea transportation, and it is not easy to predict sea fog because of the large difference in the possibility of occurrence depending on time and region. In addition, it is difficult to manage individually due to the features of Aids to Navigation distributed throughout the sea. To solve this problem, this paper aims to identify the marine weather environment by estimating sea fog level approximately with images taken by cameras mounted on Aids to Navigation and to resolve safety accidents caused by weather. Instead of optical and temperature sensors that are difficult to install and expensive to measure sea fog level, sea fog level is measured through the use of general images of cameras mounted on Aids to Navigation. Furthermore, as a prior study for real-time sea fog level estimation in various seas, the sea fog level criteria are presented using the Haze Model and Dark Channel Prior. A specific threshold value is set in the image through Dark Channel Prior(DCP), and based on this, the number of pixels without sea fog is found in the entire image to estimate the sea fog level. Experimental results demonstrate the possibility of estimating the sea fog level using synthetic haze image dataset and real haze image dataset.

Usefulness of applying Macro for Brain SPECT Processing (Brain SPECT Processing에 있어서 Macro Program 사용의 유용성)

  • Kim, Gye-Hwan;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyeon-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.35-39
    • /
    • 2009
  • Purpose: Diagnostic and functional imaging softwares in Nuclear Medicine have been developed significantly. But, there are some limitations which like take a lot of time. In this article, we introduced that the basic concept of macro to help understanding macro and its application to Brain SPECT processing. We adopted macro software to SPM processing and PACS verify processing of Brain SPECT processing. Materials and Methods: In Brain SPECT, we choose SPM processing and two PACS works which have large portion of a work. SPM is the software package to analyze neuroimaging data. And purpose of SPM is quantitative analysis between groups. Results are made by complicated process such as realignment, normalization, smoothing and mapping. We made this process to be more simple by using macro program. After sending image to PACS, we directly input coordinates of mouse using simple macro program for processes of color mapping, adjustment of gray scale, copy, cut and match. So we compared time for making result by hand with making result by macro program. Finally, we got results by applying times to number of studies in 2007. Results: In 2007, the number of SPM studies were 115 and the number of PACS studies were 834 according to Diamox study. It was taken 10 to 15 minutes for SPM work by hand according to expertness and 5 minutes and a half was uniformly needed using Macro. After applying needed time to the number of studies, we calculated an average time per a year. When using SPM work by hand according to expertness, 1150 to 1725 minutes (19 to 29 hours) were needed and 632 seconds (11 hours) were needed for using Macro. When using PACS work by hand, 2 to 3 minutes were needed and for using Macro, 45 seconds were needed. After applying theses time to the number of studies, when working by hand, 1668 to 2502 minutes (28 to 42 hours) were needed and for using Macro, 625 minutes (10 hours) were needed. Following by these results, it was shown that 1043 to 1877 (17 to 31 hours were saved. Therefore, we could save 45 to 63% for SPM, 62 to 75% for PACS work and 55 to 70% for total brain SPECT processing in 2007. Conclusions: On the basis of the number of studies, there was significant time saved when we applied Macro to brain SPECT processing and also it was shown that even though work is taken a little time, there is a possibility to save lots of time according to the number of studies. It gives time on technologist's side which makes radiological technologist more concentrate for patients and reduce probability of mistake. Appling Macro to brain SPECT processing helps for both of radiological technologists and patients and contribute to improve quality of hospital service.

  • PDF

Evaluation of Deterioration of Epoxy Primer for Steel Bridge Coating using Image Processing and Electrochemical Impedance Spectroscopy (화상처리 기법과 전기화학적 임피던스 분광법을 이용한 강교 도장용 에폭시 하도 도료의 열화 평가)

  • Lee, Chan Young;Lee, Sang Hun;Park, Jin Hwan
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.53-61
    • /
    • 2009
  • In this study, both evaluations by visual imaging for exterior view of coating and by EIS were executed for epoxy primer coated specimens deteriorated by accelerated test, and comparison and analysis were carried out for 2 evaluation methods. In the comparison between total damaged area ratio acquired by image processing method and deterioration point, higher deterioration points were appeared for rusted specimens than for non-rusted specimens. It is attributed that deterioration point per unit area ratio given for rust is higher than for peeling. In the comparison between total damaged area ratio and EIS result, impedance of coating was largely decreased as about TEX>$10^4{\Omega}{\cdot}cm^2$ or less when rust area ratio is more than about 0.1%, and blistering area ratio is more than about 3%. Charge transfer resistance ($R_{ct}$) and double layer capacitance ($C_{dl}$) values were appeared for all specimens except 2 ones, which shows that water is accumulated and steel substrate is corroded at coated film-steel interface. In the comparison between deterioration point and EIS result, more than 10 points as deterioration point were given for specimens of below $10^6{\Omega}{\cdot}cm^2$ of impedance at low frequency. For specimens deteriorated by NORSOK cyclic test, impedance was lowest of all, though deterioration point was not high. It is thought to be attributed that coating system and accelerated deterioration condition of cyclic tested specimens were different from those of main specimens. From the result, it is thought that coating resistance can be relatively more decreased than deterioration degree estimated from exterior view under more severe corrosion environment or in the present of more complex deterioration factors.

A Study on the Construction of Near-Real Time Drone Image Preprocessing System to use Drone Data in Disaster Monitoring (재난재해 분야 드론 자료 활용을 위한 준 실시간 드론 영상 전처리 시스템 구축에 관한 연구)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Recently, due to the large-scale damage of natural disasters caused by global climate change, a monitoring system applying remote sensing technology is being constructed in disaster areas. Among remote sensing platforms, the drone has been actively used in the private sector due to recent technological developments, and has been applied in the disaster areas owing to advantages such as timeliness and economical efficiency. This paper deals with the development of a preprocessing system that can map the drone image data in a near-real time manner as a basis for constructing the disaster monitoring system using the drones. For the research purpose, our system is based on the SURF algorithm which is one of the computer vision technologies. This system aims to performs the desired correction through the feature point matching technique between reference images and shot images. The study area is selected as the lower part of the Gahwa River and the Daecheong dam basin. The former area has many characteristic points for matching whereas the latter area has a relatively low number of difference, so it is possible to effectively test whether the system can be applied in various environments. The results show that the accuracy of the geometric correction is 0.6m and 1.7m respectively, in both areas, and the processing time is about 30 seconds per 1 scene. This indicates that the applicability of this study may be high in disaster areas requiring timeliness. However, in case of no reference image or low-level accuracy, the results entail the limit of the decreased calibration.

Human Gesture Recognition Technology Based on User Experience for Multimedia Contents Control (멀티미디어 콘텐츠 제어를 위한 사용자 경험 기반 동작 인식 기술)

  • Kim, Yun-Sik;Park, Sang-Yun;Ok, Soo-Yol;Lee, Suk-Hwan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1196-1204
    • /
    • 2012
  • In this paper, a series of algorithms are proposed for controlling different kinds of multimedia contents and realizing interact between human and computer by using single input device. Human gesture recognition based on NUI is presented firstly in my paper. Since the image information we get it from camera is not sensitive for further processing, we transform it to YCbCr color space, and then morphological processing algorithm is used to delete unuseful noise. Boundary Energy and depth information is extracted for hand detection. After we receive the image of hand detection, PCA algorithm is used to recognize hand posture, difference image and moment method are used to detect hand centroid and extract trajectory of hand movement. 8 direction codes are defined for quantifying gesture trajectory, so the symbol value will be affirmed. Furthermore, HMM algorithm is used for hand gesture recognition based on the symbol value. According to series of methods we presented, we can control multimedia contents by using human gesture recognition. Through large numbers of experiments, the algorithms we presented have satisfying performance, hand detection rate is up to 94.25%, gesture recognition rate exceed 92.6%, hand posture recognition rate can achieve 85.86%, and face detection rate is up to 89.58%. According to these experiment results, we can control many kinds of multimedia contents on computer effectively, such as video player, MP3, e-book and so on.