• Title/Summary/Keyword: Image Performance

Search Result 7,170, Processing Time 0.027 seconds

The effects of female applicant's facial attractiveness and feminine-masculine clothing image on job performance evaluation and hiring decision (여성 응모자의 얼굴 매력성과 의복의 여성성/남성성이 직무수행능력 판단과 고용의사결정에 미치는 영향)

  • Kim, Jeongmi;Chung, Myung-Sun
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.3
    • /
    • pp.401-412
    • /
    • 2013
  • The purpose of this study was to investigate the effects of female applicant's facial attractiveness and feminine-masculine clothing image on job performance evaluation and hiring decision. The research design of study consisted of 3(facial attractiveness high, middle, low)${\times}$2(feminine and masculine clothing image) factorial design. The subject consisted of 243 persons whose occupation were mid-sized companies' administrator in Gwangju and Seoul City. The data were analyzed by factor analysis, Duncan test, ANOVA, t-test. The results of this study were as follows. First, three factors emerged to account for the job performance evaluation. These factors were given the titles of task performance, cooperation and self-management factors. Second, applicant's facial attractiveness exerted significant positive effect on self-management and significant negative effect on cooperation. Third, applicant's facial attractiveness exerted significant effect on hiring decision. Finally, the interaction effect of female applicant's facial attractiveness and feminine-masculine clothing image on job performance evaluation and hiring decision were not significant.

A Study on Optimization of Classification Performance through Fourier Transform and Image Augmentation (푸리에 변환 및 이미지 증강을 통한 분류 성능 최적화에 관한 연구)

  • Kihyun Kim;Seong-Mok Kim;Yong Soo Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.1
    • /
    • pp.119-129
    • /
    • 2023
  • Purpose: This study proposes a classification model for implementing condition-based maintenance (CBM) by monitoring the real-time status of a machine using acceleration sensor data collected from a vehicle. Methods: The classification model's performance was improved by applying Fourier transform to convert the acceleration sensor data from the time domain to the frequency domain. Additionally, the Generative Adversarial Network (GAN) algorithm was used to augment images and further enhance the classification model's performance. Results: Experimental results demonstrate that the GAN algorithm can effectively serve as an image augmentation technique to enhance the performance of the classification model. Consequently, the proposed approach yielded a significant improvement in the classification model's accuracy. Conclusion: While this study focused on the effectiveness of the GAN algorithm as an image augmentation method, further research is necessary to compare its performance with other image augmentation techniques. Additionally, it is essential to consider the potential for performance degradation due to class imbalance and conduct follow-up studies to address this issue.

A study on the effectiveness of intermediate features in deep learning on facial expression recognition

  • KyeongTeak Oh;Sun K. Yoo
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.25-33
    • /
    • 2023
  • The purpose of this study is to evaluate the impact of intermediate features on FER performance. To achieve this objective, intermediate features were extracted from the input images at specific layers (FM1~FM4) of the pre-trained network (Resnet-18). These extracted intermediate features and original images were used as inputs to the vision transformer (ViT), and the FER performance was compared. As a result, when using a single image as input, using intermediate features extracted from FM2 yielded the best performance (training accuracy: 94.35%, testing accuracy: 75.51%). When using the original image as input, the training accuracy was 91.32% and the testing accuracy was 74.68%. However, when combining the original image with intermediate features as input, the best FER performance was achieved by combining the original image with FM2, FM3, and FM4 (training accuracy: 97.88%, testing accuracy: 79.21%). These results imply that incorporating intermediate features alongside the original image can lead to superior performance. The findings can be referenced and utilized when designing the preprocessing stages of a deep learning model in FER. By considering the effectiveness of using intermediate features, practitioners can make informed decisions to enhance the performance of FER systems.

Image Retrieval using Fast Wavelet Histogram and Color Information (고속 웨이블렛 히스토그램과 색상정보를 이용한 영상검색)

  • 김주현;이배호
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.194-197
    • /
    • 2000
  • Wavelet transform used for content-based image retrieval has good performance in texture image. Image features for content-based image retrieval are color, texture, and shape. In this paper, we use color feature extracted from HSI color space known as most similar vision system to human vision system and texture feature extracted from wavelet histogram which has multiresolution property. Proposed method is compared with HSI color histogram method and wavelet histogram method. It is shown better performance.

  • PDF

Performance Improvement Technique of Long-range Target Information Acquisition for Airborne IR Camera

  • Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.39-45
    • /
    • 2017
  • In this paper, we propose three compensation methods to solve problems in high-resolution airborne infrared camera and to improve long-range target information acquisition performance. First, image motion and temporal noise reduction technique which is caused by atmospheric turbulence. Second, thermal blurring image correction technique by imperfect performance of NUC(Non Uniformity Correction) or raising the internal temperature of the camera. Finally, DRC(Dynamic Range Compression) and flicker removing technique of 14bits HDR(High Dynamic Range) infrared image. Through this study, we designed techniques to improve the acquisition performance of long-range target information of high-resolution airborne infrared camera, and compared and analyzed the performance improvement result with implemented images.

Perceptual Bound-Based Asymmetric Image Hash Matching Method

  • Seo, Jiin Soo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1619-1627
    • /
    • 2017
  • Image hashing has been successfully applied for the problems associated with the protection of intellectual property, management of large database and indexation of content. For a reliable hashing system, improving hash matching accuracy is crucial. In order to improve the hash matching performance, we propose an asymmetric hash matching method using the psychovisual threshold, which is the maximum amount of distortion that still allows the human visual system to identity an image. A performance evaluation over sets of image distortions shows that the proposed asymmetric matching method effectively improves the hash matching performance as compared with the conventional Hamming distance.

Investigation of a blind-deconvolution framework after noise reduction using a gamma camera in nuclear medicine imaging

  • Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2594-2600
    • /
    • 2020
  • A gamma camera system using radionuclide has a functional imaging technique and is frequently used in the field of nuclear medicine. In the gamma camera, it is extremely important to improve the image quality to ensure accurate detection of diseases. In this study, we designed a blind-deconvolution framework after a noise-reduction algorithm based on a non-local mean, which has been shown to outperform conventional methodologies with regard to the gamma camera system. For this purpose, we performed a simulation using the Monte Carlo method and conducted an experiment. The image performance was evaluated by visual assessment and according to the intensity profile, and a quantitative evaluation using a normalized noise-power spectrum was performed on the acquired image and the blind-deconvolution image after noise reduction. The result indicates an improvement in image performance for gamma camera images when our proposed algorithm is used.

Comparative Analysis of the Performance of SIFT and SURF (SIFT 와 SURF 알고리즘의 성능적 비교 분석)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

A study on enhancement of heterogeneous noisy image quality for the performance improvement of target detection and tracking (표적 탐지/추적 성능 향상을 위한 불균일 미세 잡음 영상 화질개선 연구)

  • Kim, Y.;Yoo, P.H.;Kim, D.S.
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.923-936
    • /
    • 2014
  • Images can be contaminated with different types of noise, for different reasons. The neighborhood averaging and smoothing by image averaging are the classical image processing techniques for noise removal. The classical spatial filtering refers to the aggregate of pixels composing an image and operating directly on these pixels. To reduce or remove effectively noise in image sequences, it usually needs to use noise reduction filter based on space or time domain such as method of spatial or temporal filter. However, the method of spatial filter can generally cause that signals of objects as the target are also blurred. In this paper, we propose temporal filter using the piece-wise quadratic function model and enhancement algorithm of image quality for the performance improvement of target detection and tracking by heterogeneous noise reduction. Image tracking simulation that utilizes real IIR(Imaging Infra-Red) images is employed to evaluate the performance of the proposed image processing algorithm.

A study on Robust Feature Image for Texture Classification and Detection (텍스쳐 분류 및 검출을 위한 강인한 특징이미지에 관한 연구)

  • Kim, Young-Sub;Ahn, Jong-Young;Kim, Sang-Bum;Hur, Kang-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.133-138
    • /
    • 2010
  • In this paper, we make up a feature image including spatial properties and statistical properties on image, and format covariance matrices using region variance magnitudes. By using it to texture classification, this paper puts a proposal for tough texture classification way to illumination, noise and rotation. Also we offer a way to minimalize performance time of texture classification using integral image expressing middle image for fast calculation of region sum. To estimate performance evaluation of proposed way, this paper use a Brodatz texture image, and so conduct a noise addition and histogram specification and create rotation image. And then we conduct an experiment and get better performance over 96%.