Acknowledgement
This work was supported by the Industrial Technology Innovation Program (No. 20012603, Development of Emotional Cognitive and Sympathetic AI Service Technology for Remote (Non-face-to-face) Learning and Industrial Sites) funded By the Ministry of Trade, Industry and Energy (MOTIE, Korea).
References
- Dalal, N., & Triggs, B., "Histograms of oriented gradients for human detection." In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), vol. 1, pp. 886-893, Jun 2005. DOI: https://doi.org/ 10.1109/CVPR.2005.177
- Shan, C., Gong, S., & McOwan, P. W., "Robust facial expression recognition using local binary patterns." In IEEE International Conference on Image Processing 2005, vol. 2, pp. II-370, Sep 2005. DOI: https://doi.org/ 10.1109/ICIP.2005.1530069
- Lee, S. H., Plataniotis, K. N., & Ro, Y. M., "Intra-class variation reduction using training expression images for sparse representation based facial expression recognition." IEEE Transactions on Affective Computing, Vol. 5, Issue 3, pp.340-351, Aug 2014. DOI: https://doi.org/ 10.1109/TAFFC.2014.2346515
- Li, Y., Zeng, J., Shan, S., & Chen, X., "Occlusion aware facial expression recognition using CNN with attention mechanism." IEEE Transactions on Image Processing, Vol. 28, No. 5, pp.2439-2450, Dec 2018 DOI: https://doi.org/ 10.1109/TIP.2018.2886767
- Saeed, S., Shah, A. A., Ehsan, M. K., Amirzada, M. R., Mahmood, A., & Mezgebo, T., "Automated facial expression recognition framework using deep learning." Journal of Healthcare Engineering, Vol. 2022, Mar 2022. DOI: https://doi.org/10.1155/2022/5707930
- Zhi, R., Zhou, C., Li, T., Liu, S., & Jin, Y., "Action unit analysis enhanced facial expression recognition by deep neural network evolution." Neurocomputing, Vol. 425, pp.135-148, Feb 2021. DOI: https://doi.org/10.1016/j.neucom.2020.03.036
- Liang, D., Liang, H., Yu, Z., & Zhang, Y., "Deep convolutional BiLSTM fusion network for facial expression recognition." The Visual Computer, Vol. 36, pp.499-508, Feb 2020. DOI: https://doi.org/10.1007/s00371-019-01636-3
- Sun, N., Li, Q., Huan, R., Liu, J., & Han, G., "Deep spatial-temporal feature fusion for facial expression recognition in static images." Pattern Recognition Letters, Vol. 119, pp.49-61, Mar 2019. DOI: https://doi.org/10.1016/j.patrec.2017.10.022
- Valstar, M., & Pantic, M., "Induced disgust, happiness and surprise: an addition to the mmi facial expression database." In Proc. 3rd Intern. Workshop on EMOTION (satellite of LREC): Corpora for Research on Emotion and Affect, p. 65, May
- Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., & Matthews, I., "The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression." In 2010 ieee computer society conference on computer vision and pattern recognition-workshops, pp. 94-101, Jun 2010. DOI: https://doi.org/10.1109/CVPRW.2010.5543262
- Barsoum, E., Zhang, C., Ferrer, C. C., & Zhang, Z., "Training deep networks for facial expression recognition with crowd-sourced label distribution." In Proceedings of the 18th ACM international conference on multimodal interaction, pp. 279-283, Oct 2016. DOI: https://doi.org/10.48550/arXiv.1608.01041
- Li, S., Deng, W., & Du, J., " Reliable Crowdsourcing and Deep Locality-Preserving Learning for Unconstrained Facial Expression Recognition." IEEE Transactions on Image Processing, Vol. 28, Issue 1, pp. 356-370, Jan 2019. DOI: https://doi.org/ 10.1109/TIP.2018.2868382
- Mollahosseini, A., Hasani, B., & Mahoor, M. H., "Affectnet: A database for facial expression, valence, and arousal computing in the wild.", IEEE Transactions on Affective Computing, Vol. 10, No. 1, pp.18-31, Aug 2017. DOI: https://doi.org/ 10.1109/TAFFC.2017.2740923
- Georgescu, M. I., Ionescu, R. T., & Popescu, M., "Local learning with deep and handcrafted features for facial expression recognition.", IEEE Access, Vol. 7, pp.64827-64836, May 2019. DOI: https://doi.org/ 10.1109/ACCESS.2019.2917266
- Ruan, D., Yan, Y., Lai, S., Chai, Z., Shen, C., & Wang, H., "Feature decomposition and reconstruction learning for effective facial expression recognition." In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.7660-7669, Apr 2021. DOI: https://doi.org/10.48550/arXiv.2104.05160
- Liu, Y., Feng, C., Yuan, X., Zhou, L., Wang, W., Qin, J., & Luo, Z., "Clip-aware expressive feature learning for video-based facial expression recognition." Information Sciences, Vol. 598, pp.182-195, Jun 2022. DOI: https://doi.org/10.1016/j.ins.2022.03.062
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., "Attention is all you need." Advances in neural information processing systems, Jun 2017. DOI: https://doi.org/10.48550/arXiv.1706.03762
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S. and Uszkoreit, J., "An image is worth 16x16 words: Transformers for image recognition at scale. ", arXiv, 2010. DOI: https://doi.org/10.48550/arXiv.2010.11929
- Ma, F., Sun, B. and Li, S., "Facial expression recognition with visual transformers and attentional selective fusion." IEEE Transactions on Affective Computing, pp. 1-1, Oct 2021. DOI: https://doi.org/10.1109/TAFFC.2021.3122146
- Liu, C., Hirota, K., & Dai, Y., "Patch attention convolutional vision transformer for facial expression recognition with occlusion.", Information Sciences, Vol. 619, pp. 781-794, Jan 2023. DOI: https://doi.org/10.1016/j.ins.2022.11.068
- Pong, K. H., & Lam, K. M., "Multi-resolution feature fusion for face recognition." Pattern Recognition, Vol. 47, No. 2, pp.556-567, Feb 2014. DOI: https://doi.org/10.1016/j.patcog.2013.08.023
- Lin, T. Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S., "Feature pyramid networks for object detection." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117-2125, Jul 2017. DOI: https://doi.org/10.1109/CVPR.2017.106
- He, K., Zhang, X., Ren, S., & Sun, J., "Deep residual learning for image recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778. 2016. DOI: https://doi.org/10.48550/arXiv.1512.03385
- Kingma, D. P., & Ba, J., "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980, Dec 2014. DOI: https://doi.org/10.48550/arXiv.1412.6980
- Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q. V., "Randaugment: Practical automated data augmentation with a reduced search space." In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp.702-703. 2020. DOI: https://doi.org/10.48550/arXiv.1909.13719