LCD 수요 증가에 따라 LCD 생산 효율성 개선을 위한 검사장비의 중요성이 지속적으로 부각되고 있다. 패턴 검사기는 라인 스캔 카메라와 같은 광학 장비를 통해 미세한 패턴 결함을 빠른 속도로 검출하는 장비이다. 이러한 패턴 검사기는 실시간 검사를 위해 패턴 내에서 단일 기준값을 사용하여 픽셀 단위의 결함 여부를 판단하고 있다. 하지만 패턴 내 각 영역별 특징을 반영하여 서로 다른 기준값을 적용하는 적응적 이진화를 이용하는 경우 결함 검출 성능을 크게 향상시킬 수 있다. 이러한 적응적 이진화를 적용하기 위해서는 특정 검사 대상 픽셀이 어떠한 영역에 속하는지에 대한 정보를 필요로 한다. 이를 위해 본 논문에서는 각각의 검사 대상 픽셀이 어떠한 영역에 속하는지를 판단하는 영역 매칭 알고리즘을 제안한다. 제안된 알고리즘은 머신 비전의 실시간성을 고려한 패턴 정합에 기반을 둔 알고리즘으로 실제 시스템에 적용될 수 있도록 GPGPU를 이용하여 구현된다. 모의실험을 통해 제안된 방법이 실제 시스템이 요구하는 처리 속도를 만족시킬 수 있을 뿐만 아니라 결함 검출의 성능을 개선할 수 있음을 보인다.
본 논문은 2채널 이상의 다중 카메라를 사용하는 곡면 스크린 사격 시스템에서 패턴 레이저 영상의 좌표를 안정적으로 추적할 수 있는 방법을 제안하였다. 이 방법은 HMD 사격 방식을 대체할 수 있는 다중 스크린 사격 방식에 적용시 매우 효과적으로 타겟점을 추적 및 획득할 수 있다. 개별 카메라로부터 획득한 변형이 심한 곡면 스크린의 영상을 영상 정규화, 영상 이진화 및 노이즈 제거를 통해 보정한다. 이 보정된 영상을 매칭점을 기준으로 사격의 탄착점 추적에 용의한 유클리드 공간 맵으로 생성하여 적용한다. 실험한 결과, 곡면 스크린 사격 시스템에서 패턴 레이저의 영상 좌표를 안정적으로 추출하였고, 실세계 좌표 위치와 광대역 유클리드 맵의 타켓점 위치 오차를 최소화하였다. 실험을 통해 제안한 방법의 신뢰성을 확인하였다.
영상을 이용한 생체 신호 측정 기술이 발전하고 있으며, 특히 생명 유지를 위한 호흡 신호 측정기술 연구가 지속적으로 진행되고 있다. 기존 기술은 사람의 몸에서 방출하는 열을 측정하는 열화상 카메라를 통하여 호흡 신호를 측정하였다. 또한, 실시간으로 사람의 흉부 움직임을 분석하여 호흡률을 측정하는 연구도 진행되었다. 하지만, 적외선 열화상 영상을 이용하여 영상 처리를 하는 것은 외부 환경 요인으로 인해 호흡 기관의 탐색이 어려울 수 있으며, 이에 따라 호흡률 측정의 정확도가 떨어지는 문제들이 발생했다. 본 연구에서는 호흡 기관의 영역 탐색을 강화하기 위해 가시광 및 적외선 열화상 카메라를 이용하여 영상을 취득하였다. 그리고 두 영상을 기반으로 얼굴 인식, 영상 정합 등의 과정을 통해 호흡 기관 영역의 특징을 추출한다. 추출한 특징 값을 통계학적 분류 방법 중 하나인 k-최근접 이웃 분류기를 통해 호흡 신호의 패턴을 분류한다. 분류한 패턴의 특성에 따라 호흡률을 계산하며, 측정한 호흡률의 성능을 확인하기 위해 실제 호흡률과 비교 과정을 통해 분석함으로써, 호흡률 측정의 가능성을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.311-326
/
2024
The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.
블록 정합 알고리즘 (Block Matching Algorithm: BMA)에서 탐색 패턴은 탐색 속도와 화질에 매우 중요한 요소로 작용한다. 본 논문이 제안하는 HDS(Half Diamond Search) 패턴은 대부분 영상들의 움직인 벡터가 탐색 영역의 중심과 상ㆍ하ㆍ좌 우 방향에 집중되어 있는 특성을 고려하여 먼저 탐색 원점을 중심으로 4 방향 탐색 점을 배치한 후 블록 정합을 실행한다. 이들 중 정합 오차가 가장 작은 지점을 기준점으로 상 방향으로 탐색 점을 확장하여 정합 오차를 측정하고 기준점보다 오차가 작으면 상 방향확장을 선택하고 그렇지 않으면 기준점을 중심으로 좌우 두 점 중 정합오차가 작은 점을 선택한다. 선택된 방향으로 이 과정을 반복하며 움직임을 추정한다. 탐색하면서 움직임이 낮은 부분을 탐색 대상에서 제외해가기 때문에 탐색이 비교적 빠르고 정확하게 이루어진다. 이 방법은 기존의 부분 최적 탐색 기법인 NTSS, DS, 그리고HEXBS등의 탐색법과 비교할 때 유사한 화질을 유지하면서도 탐색 점수에서는 평균 23%의 개선된 결과를 얻었다.
본 논문은 조명변화에 민감하지 않고, 사진에 대한 오인식을 방지하기 위한 얼굴인식 방법을 제안한다. 제안한 방법은 적외선과 깊이 영상을 동시에 이용하며, 적외선 영상으로 조명변화의 민감성을 해결하고, 깊이 영상으로 사진과 같은 2차원 영상에 대한 오인식을 방지한다. 적외선과 깊이 영상을 동시에 이용한 얼굴 검출 방법과 얼굴 인식을 위한 특징 추출 및 매칭 방법을 구현하였으며, 모의실험을 통하여 기존 방법에 비해 얼굴인식의 정확도가 증가함을 보인다.
We present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images from the surroundings having vertical line edges by one camera. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right regions of the each line are computed by using the properties of the line and a region growing method. The pattern vectors are matched with the feature points of the map by comparing the color information and the geometrical relationship. From the perspective transformation and rigid transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.
In this paper, we present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images by one camera from the surroundings having vertical line edges. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right region of each line segment are computed. The pattern vectors are matched with the feature points of the map using the color information and the geometrical relationship of the points. From the perspective transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.
In this paper, we report a new scheme of multimode fiber sensor which uses pattern matching method. Fiber speckle pattern allows the wide dynamic range of the intensity based sensor. The proposed method uses pre-built specklegram database which is made by image processing techniques of wavelet transform and edge detection for the sake of compact data storage and fast sensing time. We demonstrate our proposed sensor and the experimental results will do presented.
본 논문에서는 FPGA를 기반으로 Camera Link (Medium)를 제공하는 PCB 패턴 검출 시스템을 구현하였다. 시스템 구현을 위해 비전 라이브러리를 IP로 구현하여 고속으로 패턴 매칭을 할 수 있도록 하였다. 구현된 IP는 영상입력용 카메라링크 IP, 히스토그램 IP, VGA 제어 IP, 수직투영 IP 및 수평투영 IP가 있다. 디지털 카메라에서 고속으로 전송되는 영상을 처리하기 위해 Xilinx사의 Virtex-5 계열의 FPGA 칩을 사용하였다. 그래버 시스템 구현을 위해 RISC 구조의 CPU인 MicroBlaze를 사용하였으며, PC와의 연동을 위해 PCI Express를 사용하였으며, 영상의 처리결과는 컴퓨터의 모니터와 7인치 LCD에 표현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.