• Title/Summary/Keyword: Image Edge

Search Result 2,472, Processing Time 0.026 seconds

Modulation Transfer Function (MTF) Measurement For 1 m High Resolution Satellite Images such as KOMPSAT-2 U sing Edge Function

  • Song Jeong-Heon;Lee Dong-Han;Lee Sun-Gu;Seo Du-Ceon;Park Soo-Young;Lim Hyo-Suk;Paek Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.482-484
    • /
    • 2005
  • The Modulation Transfer Function (MTF) is commonly used to characterize the spatial quality of imaging systems. This work is the attempt to measure the MTF at Nyquist frequency of the satellite imaging system what has 1m spatial resolution for KOMPSAT-2 image using the edge function. Artificial tarp targets are used in this study. A type of this tarp edge consists of two adjacent uniform bright and dark sides commonly used to test the performance of an optical system in edge function. The results from this work demonstrate the potential applicability of this method to estimate the response characteristics for KOMPSAT-2 that is scheduled to be launched.

  • PDF

Transient Improvement Algorithm in Digital Images

  • Kwon, Ji-Yong;Chang, Joon-Young;Lee, Min-Seok;Kang, Moon-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.74-76
    • /
    • 2010
  • Digital images or videos are used in modern digital devices. The resolution of HDTV in digital broadcasting system is higher than that of previous analog systems. Also, mobile phone with 3G can provide images as well as video streaming services in realtime. In these circumstances, the visual quality of images has become an important factor. We can make image clear by transient improvement process that reduces transient in edges. In this paper, we present an transient improvement algorithm. The proposed algorithm improves edges by making smooth edge to steep edge. Before performing transient improvement algorithm, edge detection algorithm should be operated. Laplacian operator is used in edge detection, and the absolute value of it is used to calculate gain value. Then, local maximum and minimum values are computed to discriminate current pixel value to raise up or pull down. Compensating value that gain value multiplies with the difference between maximum (or minimum) value and current pixel value adds (or subtracts) to current pixel value. That is, improved signal is generated by making the narrow transient of edge. The advantage of proposed algorithm is that it doesn't produce shooting problem like overshoot or undershoot.

  • PDF

Noise reduction based on directional Wiener filter using local adaptive estimation window (가변적인 국부 추정 윈도우를 이용한 방향성 Wiener filter에 의한 잡음 제거)

  • 우동헌;김유신;김재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.568-574
    • /
    • 2002
  • The main issue of noise reduction of image is how to preserve edge and reduce noise. Usually, The Wiener falter is used for this purpose. But the conventional Wiener filter cannot remove noise well in both edge and smooth region due to the single size estimation window. In addition, it ignores the correlation between pixels. In this paper, we propose a new noise reduction algorithm, in which adaptive estimation window is used according to property of smooth region and edge region. In order to make edge more clear, directional Gaussian mask and directional estimation window combines to the Wiener filter according to direction of edge. From the simulation results, it can be seen that the proposed algorithm showed improves performance in both PSNR arid subjective evaluation

An Adaptive Deinterlacing Algorithm Using a Median Filter (중간값 필터를 이용한 적응적 디인터레이싱 알고리듬)

  • Lee, Sang-Un;Baek, Kyung-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.87-91
    • /
    • 2011
  • In this paper, we propose a new deinterlacing method that converts the interlaced images into the progressive images using a field. Firsr of all, it estimates the direction of edge. If it makes an accurate estimate of the direction, then it interpolates a pixel using ELA(Edge-based Line Average). Otherwise, it estimates the new direction of edge, and then,, it interpolates a pixel using a proposed median filter. From simulation results, it is shown that the proposed method improves both subjective and objective image quality as compared with previous deinterlacing methods.

Novel De-interlacing Algorithm Using All Direction Edges Estimation Technique (전 방향 에지 예측 기법을 이용한 De-interlacing 알고리듬)

  • Ku, Su-Il;Lee, Se-Young;Kang, Kun-Hwa;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.725-733
    • /
    • 2008
  • This paper proposed a novel do-interlacing algorithm using all direction edges estimation technique. In the proposed algorithm. previously developed the DOI(Direction-Oriented Interpolation) algorithm was used as a basis. The do-interlacing method was divided into two main parts. First, we should estimate edge direction. Then, missing pixel: were interpolated along with the decided edge. In this paper, after estimating the edge through the DOI algorithm considering high angle edge direction, missing pixels were interpolated by using the median filter. Experimental results indicate that the proposed algorithm is superior to the conventional algorithms in terms of the objective and subjective criteria.

Directional Block Loss Recovery sing Hypothesis Testing Problem (가설 검증 기법을 이용한 방향성을 가지는 손실 블록의 복구)

  • Hyun, Seung-Hwa;Kim, Yoo-Shin;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, we present a directional error concealment technique to compensate a lost block. Generally, the strong edge of an image has the large amounts of the variance because of its large coefficients in the wavelet domain. For estimating edge direction of a lost block, a $X^2$ hypothesis-testing problem is applied using the variance of wavelet coefficients. The lost block is interpolated according to the estimated edge direction. The pixels for interpolation is obtained from the edge direction. The proposed method outperforms the previous methods in objective and subjective qualities.

A Study on Edge Detection Algorithm using Local Mask and Morphological Operation (모폴로지 연산과 국부 마스크를 이용한 에지 검출 알고리즘에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.900-902
    • /
    • 2015
  • In the modern society, according to the advancement in digital image processing technology, edge detection is being utilized in various application sectors such as smart device and medical, etc. In existing edge detection methods, there are Sobel, Prewitt, Roberts and Laplacian, etc, which uses the mask. These previous methods are easy to implement but shows somewhat insufficient results. Therefore, in order to compensate the problems of existing methods, in this paper, an algorithm that detects the edge using the local mask and morphological operation was proposed and the detection performance was compared against the previous methods.

  • PDF

Boundary Extraction of Moving Objects using Moving Edge and Heuristic Search (이동에지와 휴리스틱 탐색을 이용한 움직이는 물체의 경계추출)

  • 김종대;김성대;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.3
    • /
    • pp.249-262
    • /
    • 1989
  • We present a method of boundary extraction of moving objects. We propose four methods for detecting moving edge pixels which can be located on the boundaries of moving objects. We select the best one after we test the above four methods to real image sequences. The portion of the boundaries of moving objects which is marked as moving edge pixels is searched along the moving edge pixels with simple heuristics. And the end points of the resultant line segments are utilized as the start points of the secon stage heuristic search. This second stage search is performed for the boundaries of moving objects which is not marked as moving edge pixels due to various reasons. We test our algorithm for two real sequences and we find that this simple algorithm has good performance.

  • PDF

Person-Independent Facial Expression Recognition with Histograms of Prominent Edge Directions

  • Makhmudkhujaev, Farkhod;Iqbal, Md Tauhid Bin;Arefin, Md Rifat;Ryu, Byungyong;Chae, Oksam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6000-6017
    • /
    • 2018
  • This paper presents a new descriptor, named Histograms of Prominent Edge Directions (HPED), for the recognition of facial expressions in a person-independent environment. In this paper, we raise the issue of sampling error in generating the code-histogram from spatial regions of the face image, as observed in the existing descriptors. HPED describes facial appearance changes based on the statistical distribution of the top two prominent edge directions (i.e., primary and secondary direction) captured over small spatial regions of the face. Compared to existing descriptors, HPED uses a smaller number of code-bins to describe the spatial regions, which helps avoid sampling error despite having fewer samples while preserving the valuable spatial information. In contrast to the existing Histogram of Oriented Gradients (HOG) that uses the histogram of the primary edge direction (i.e., gradient orientation) only, we additionally consider the histogram of the secondary edge direction, which provides more meaningful shape information related to the local texture. Experiments on popular facial expression datasets demonstrate the superior performance of the proposed HPED against existing descriptors in a person-independent environment.

A Technique for Measuring Vibration Displacement Using Camera Image (카메라 영상을 이용한 진동변위 측정)

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Park, Jin-Ho;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.789-796
    • /
    • 2013
  • Vibration measurements using image processing have been studied by many researchers as it can remotely measure vibration displacements at multiple points simultaneously. It is difficult, however, to obtain accurate displacement from the measured image signals because the resolution of image data is dependent on camera performance and normally lower than that of vibration transducer directly measured. This paper suggests the enhanced technique for vibration displacement measurement by applying the expected value of edge probability distribution to the varying pixel points in the image. The method can both increase the resolution limit of camera image and decrease the measurement errors. The working performance of the proposed technique is verified applying to the vibration measurement of a rotating machine.