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Abstract 
 

This paper presents a new descriptor, named Histograms of Prominent Edge Directions 
(HPED), for the recognition of facial expressions in a person-independent environment. In this 
paper, we raise the issue of sampling error in generating the code-histogram from spatial 
regions of the face image, as observed in the existing descriptors. HPED describes facial 
appearance changes based on the statistical distribution of the top two prominent edge 
directions (i.e., primary and secondary direction) captured over small spatial regions of the 
face. Compared to existing descriptors, HPED uses a smaller number of code-bins to describe 
the spatial regions, which helps avoid sampling error despite having fewer samples while 
preserving the valuable spatial information. In contrast to the existing Histogram of Oriented 
Gradients (HOG) that uses the histogram of the primary edge direction (i.e., gradient 
orientation) only, we additionally consider the histogram of the secondary edge direction, 
which provides more meaningful shape information related to the local texture. Experiments 
on popular facial expression datasets demonstrate the superior performance of the proposed 
HPED against existing descriptors in a person-independent environment.  
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1. Introduction 

Understanding human behavioral characteristics is one of the integral parts of biometric 
research, especially in biometric authentication, affective computing, and human-computer 
interaction (HCI) research [1]. One of the better ways of understanding behavioral 
characteristics is the analysis of facial expressions, since a person’s expression to a specific 
change reflects his behavioral traits. However, facial features change differently in different 
expressions, and hence, a robust description of such changes is vital in recognizing facial 
expressions. Therefore, recognition of facial expressions largely depends on the representation 
of face images, which in turn should robustly describe facial appearance changes against pose, 
noise and illumination variations. 

Existing methods for the description of the human face can mainly be categorized into two 
broad categories: geometric feature-based approaches and appearance feature-based 
approaches. The geometric-feature-based approaches [2], [3] represent facial geometry using 
the shape and location of the facial components. Hence, these methods become dependent on 
accurate and reliable facial landmark detection, where the performance of the recognition may 
degrade in the case of incorrectly detected landmarks [1], [4]. On the contrary, 
appearance-based methods represent the appearance changes of the facial image, which can be 
further classified into two categories: global (holistic) and local. The global appearance-based 
methods represent the face globally by applying various techniques such as Principal 
Component Analysis (PCA), Independent Component Analysis (ICA), and Linear 
Discriminant Analysis (LDA) [5], [6]. However, such global representation of the face may 
not be robust in the presence of micro-level appearance changes or pose and illumination 
variations, as indicated in [4]. The local appearance-based methods represent micro-level 
feature information by describing the appearance changes from the local region. This approach 
can also be categorized into two more groups: texture-based and edge-based methods. Among 
the texture-based methods, the Local Binary Pattern (LBP) [1] is most often used due to its 
computational efficiency and robustness to monotonic illumination changes. 

On the contrary, the edge-based methods, such as the Local Directional Pattern (LDP) [7], 
Local Directional Number Pattern (LDN) [4], Local Principal Texture Pattern (LPTP) [8] and 
Positional Ternary Pattern (PTP) [9] utilize the local edge directional information to represent 
local texture. Roughly speaking, these methods apply eight-directional Kirsch compass masks 
[10] in the local neighborhood of a pixel and select the positions of the top few edge responses 
as major directions of local edge-shape. These major directions efficiently represent the shape 
of the local texture-primitives, such as edges and corners [11], which are crucial in 
representing expression changes. Apart from the above descriptors that generate code for each 
pixel, the well-known Histogram of Oriented Gradients (HOG) [12] represents the texture 
variation with the histogram of the primary edge direction (i.e., gradient orientation) over 
small spatial regions. Information from such regions provides significant spatial information 
related to the face. Moreover, HOG uses quantized orientation-bins, which decreases the 
possibility of generating useless empty bins in the code-histogram and avoids sampling errors. 

1.1 Problem Statement 
One major aspect of the above local descriptors, including LBP, LDP, LDN, LPTP, and PTP is 
the generation of code histogram, where the face image is divided into p × q uniform       
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Fig. 1. (a) Face with larger grid-size. The red-marked grid contains multiple face-components (part of 

eye and nose-bridge). (b) Face with smaller grid-size, where local descriptors produce a number of 
empty bins for each grid (see the blue-marked grid). 

 
regions (grids). Then, codes generated from all these regions are concatenated to form the final 
feature-vector. However, selecting an optimal grid-size against the wide number of code bins 
for the descriptors is always a critical issue. Maintaining a smaller grid-size preserves more 
spatial information from the face image. However, since small grids do not possess enough 
samples (i.e., pixels), code-histograms having a wide number of code-bins are prone to 
sampling error and may not provide the correct interpretation of that region. On the contrary, a 
grid-size that has fewer grids may avoid sampling error. But, this loses important spatial 
information due to its global nature. Fig. 1 (a) shows that a face with comparatively larger 
grid-sizes may include different face components in one grid (as in grid indicated in red). Thus, 
it loses the individual spatial information of each of the face components. Fig. 1 (b) shows the 
same face image with small grids, which, in contrast, do not include multiple face components 
in one grid, and resulting in more detailed spatial information. However, the local descriptors 
use a wide number of bins, but the small region does not possess enough pixels, resulting in 
sampling error. Moreover, the code-histograms from this small region end up with a large 
number of empty bins having no meaningful information, as shown in the blue-marked grid of 
that image. This affects the recognition performance. Therefore, preserving spatial 
information while avoiding sampling error is one of the key issues in representing 
expression-based changes in the face. 

An apparent solution to the above problem is to generate a histogram within small grids 
with a fewer code-bins. Smaller grids will preserve the important spatial information, whereas 
fewer code-bins will restrict the generation of empty bins, reducing the sampling error. 
Applying HOG can be a possible solution in this regard, as it has fewer quantized 
orientation-bins within smaller spatial grids. HOG considers the primary edge-direction 
(gradient orientation) of the pixel, which is similar to using the top Kirsch edge-direction, as in 
the existing edge-descriptors. However, the primary edge direction may not describe the 
discernible expression-affiliated textures unambiguously. For instance, in Fig. 2, the primary 
direction appears in the same position (2) in both the edge and corner patches, and it does not 
provide sufficient evidence to differentiate the patches. Nevertheless, the direction with the 
second top response (secondary direction) appears differently in these patches, providing a 
significant cue to differentiate the patches. Therefore, encoding the secondary direction along 
with the primary direction may provide more meaningful information and represent 
expression-related features more efficiently. Note that in the above examples, we have only 
considered the edge-descriptors that use Kirsch compass mask responses to generate their 
codes. Recently, Ryu et al. [13] proposed a Local Directional Ternary Pattern (LDTP) [13] 
that utilizes the top absolute responses from the symmetric four-directional Robinson compass 
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masks [14]. Because the absolute responses are used, LDTP misses the sign information, 
which is then addressed with an additional ternary pattern. On the contrary, the top positive 
responses from Kirsch masks, as in Fig. 2, directly inherit the sign information and 
successfully represent the texture-structure without the inclusion of any additional structural 
pattern. Therefore, we consider the responses of Kirsch masks in this work.  

 

 
Fig. 2. Sample edge and corner patch with the corresponding Kirsch responses. Blue and yellow colors 

denote the position of primary and secondary direction, respectively. 
 

1.2 Our Proposal  
In this paper, we propose a novel descriptor, named Histograms of Prominent Edge Directions 
(HPED) to address the previously mentioned shortcomings of the existing descriptors in 
representing the face image. In contrast to the existing HOG that constructs the histogram of 
the primary edge direction only, we additionally consider a histogram of the secondary edge 
direction to achieve more meaningful information related to local shape. In the coding, we 
represent primary and secondary edge directions with the top two Kirsch directional responses, 
and construct histograms of both primary and secondary directions within smaller grids 
followed by concatenating all the histograms together to generate the final feature-vector. Top 
Kirsch directions can be any of the eight neighboring directions, and hence only 8-bin code 
histograms for each of the primary and secondary directions can be generated for each spatial 
grid of the face. This is advantageous in two ways. First, compared to the existing descriptors 
that suffer from sampling error for having a wide number of code-bins within limited samples, 
the proposed method generates a histogram in its eight code-bin only, avoiding the sampling 
error in the presence of limited samples. Second, this strategy reduces the possibility of 
encountering useless empty bins in the code-histogram, restricting the meaningless 
information in the feature description. We conducted experiments on well-known facial 
expression datasets with HPED under a person-independent environment, where HPED is 
found to achieve better performance than other existing descriptors. Moreover, we test the 
performance of HPED in the presence of noise and positional variations (as well as 
low-resolution, where we observe better accuracies of HPED), showing its overall efficacy in 
the recognition of facial expressions. 
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2. Methodology 
The proposed HPED describes the facial appearance changes by the statistical distribution of 
the top two prominent edge directions from the spatial regions of the face image. In existing 
facial analysis research, the face is divided into several regions to represent the spatial 
information of the face image, and then code-histograms are generated from each of these 
regions. In this way, the existing descriptors may suffer from sampling error due to having 
fewer samples. Therefore, a meaningful description of the face image is desired where spatial 
information will be preserved while limiting the sampling error. In our approach, we ensure 
such information by generating separate histograms for the top two edge directions over 
smaller spatial grids. Therefore, each histogram will have a maximum of eight bins, which 
avoids sampling error despite having insufficient samples, and preserves the valuable spatial 
information through the use of smaller spatial grids.  
 

 
Fig. 3. HPED code generation. Primary and secondary histograms for each of the regions are generated, 
and then they are concatenated to form the final histogram. Eight different positions of the prominent 

directions are shown in different colors. 
 

We start computing the coding by applying eight directional Kirsch masks [10] to the pixels 
of an input image. The Kirsch mask rotates in a 45˚ direction and generates edge responses in 
eight different directions. Let us assume that I(x, y) is a pixel value in a two-dimensional image 
space. We apply eight Kirsch masks on it as 

 
( , ), 0 7i iKR M I x y i= ∗ ≤ <                                              (1) 

 
where, KRi is the ith response value of the Mi Kirsch mask. However, not all the responses 
among these eight are significant in representing the appropriate shape structure. According to 
[9], [11] the top two responses contain shapes related to the most significant structural 
information. Therefore, we extract the position of two highest responses among the eight 
responses, 
 

2
arg max{ : 0 7}k

j iD KR i= ≤ <                                               (2) 
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where, Dj holds the jth highest response value, where j ϵ {1, 2} and k is the corresponding 
neighbor position. We call the positions of these highest two responses “primary” and 
“secondary” directions, respectively. 

We now calculate primary and secondary directions for each pixel of an input image in the 
above way. To generate the feature vector of that image, we divide the face image into 
p×q(=z) regions. For each region, we generate two different histograms, one having the 
code-bins of the primary direction and the other the code-bins of the secondary direction. 
Since both primary and secondary directions appear in any of the eight neighboring pixels, the 
total code-bin of each histogram is eight. Histogram generation for each of the regions is 
formally defined as, 
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where, the k is the neighbor position (code-bin) (k ϵ (0, 1, 2, ..., 7)) of the jth prominent 
direction histogram, Hz

j, for a region, Rz in which m is a pixel that contains a possible code 
(direction). Note that the weight of the code bin is denoted by ν. Selecting ν is crucial in our 
method since different weighting strategies will provide different distributions. In the face 
image, the high-textured areas show the dominance of top m-significant edge-directions, 
whereas flat regions (i.e., chicks) show fewer directional variations. Therefore, the weighting 
should be considered in such a way that the accumulation of these less directional variations 
must not dominate the significant directional changes of the textured area. For this purpose, we 
employ a damping function on the primary and secondary edge responses, and the output of 
the function is used as the weight, ν, for that respective directional bin. We use different types 
of functions like 
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Here, different damping functions are shown, such as the edge response itself, its square, 
square root, the response of a logarithmic function, min-max normalization, and the simple 
occurrence of direction, respectively. The effect of each of the functions is shown in the 
following section. However, after generating two separate histograms for primary and 
secondary directions for all the regions, we combine all these histograms into one large 
histogram, 
 

                                                              
2

1 1

j z
j
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=

= =
= Ω Ω                                                                (5) 

 
where Ω is the concatenation operator, which combines the histogram of each jth direction to 
generate the final histogram, H. H is used as the final feature-vector for HPED. We illustrate 
an example of generating the HPED descriptor of an input image in Fig. 3. 
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3. Experimental Results and Analysis 
In this section, we provide a comparative performance analysis of the proposed descriptor for 
person-independent facial expression recognition. In our approach, we conducted a 
leave-one-subject-out cross-validation (LOSO) testing scheme, where we omitted the 
expression images of one person from the training set and then used them for testing. The 
process was repeated for N-persons, and the average results are reported. Since no prior person 
information is included in the training stage, this scheme ensures person independence (PI) in 
our testing. We conducted our experiments in four existing expression datasets, including 
CK+ [15], FACES [16], BU-3DFE [17], and RaFD [18]. Sample expression-images for each 
dataset are presented in Fig. 4.  

However, we started the experiments by cropping the dataset-images using either the 
ground-truth positions of the eyes and mouth, or manual selections. Afterward, we normalized 
the images to 110 × 150 resolution, as was also done in [1], [4], [7]. We now generated the 
HPED feature-vector for the images using the strategy described in Section 2. For 
classification purposes, we used the Support Vector Machine (SVM) classifier [19] with an 
RBF kernel, since SVM has been effective in classifying the expression classes in existing 
works [1], [4], [7]. However, to select the optimal parameters, we conducted a grid-search on 
the hyper-parameters with leave-one-subject-out cross-validation approach and picked the 
parameter values giving the best cross-validation results. We conducted our experiments using 
Visual Studio 2015 on a computer with an Intel core i5 @2.67GHz with 8GB RAM. 
 

 
Fig. 4. Example of different facial expression images from several datasets:  

a) CK+, b) FACES, c) RaFD, and d) BU-3DFE. 
 

3.1 Parameter Selection 
There are several parameters for the proposed descriptor, including the histogram weight, ν, as 
used in Eq. (3), and most importantly, the size of the grid, p × q. Choosing smaller grids 
provides more spatial information, but it may suffer from sampling error. On the contrary, 
larger regions may avoid sampling error at the cost of losing valuable spatial information. 
Therefore, selection of the optimal grid-size is of great importance in HPED. Moreover, the 
purpose of the histogram weight, ν, is to ensure the dominance of the bins with significant 
directional changes over the bins with fewer directional variations, which also plays a vital 
role in appropriately describing the local structural patterns. 

To get the best parameter values for HPED, we followed the procedure mentioned in [7]; 
that is, we evaluated the recognition performance for HPED using a combination of different 
parameter values in 500 randomly collected images from the working datasets, and we chose 
the values giving the best performance. Results are shown in Fig. 5, where the best result is 
observed considering the 11 × 11 grid-size. 
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Fig. 5. Recognition results of HPED for different weighting schema, ν, and grid sizes, p × q with 500 

randomly collected images from working datasets. 
 

As we see from the figure, decreasing the number of the grid decreases the performance for 
larger grids due to the loss of important spatial information. If we increase the number of grids 
beyond 11 × 11, more fine-level spatial information will be included, but the number of 
samples per grid will decrease at the same time, affecting the performance. Subsequently, we 
present the results for different weight functions in the same figure, where we observe the best 
performance when considering the square root of the response value. Therefore, we used        
11 × 11 grid-sizes and square root of the response value as the weight, ν, as the optimal 
parameters for HPED. 

3.2 Recognition Results  

CK+ Results 
The Extended Cohn-Kanade (CK+) [15] dataset contains 593 image sequences, where 327 
sequences with 123 subjects are labeled with one of the seven different expressions (anger, 
contempt, disgust, fear, happiness, sadness and surprise). For our experiments, we used the 
peak expression images of each labeled sequence, as done in prior works [1], [4], [7]. We 
conducted extensive experiments on CK+ for the given 7-expression classes to show the 
comparative efficacy of HPED over existing descriptors and other state-of-the-art methods. 
Specifically, we showed the performance of HPED under noise and positional variation. 
Moreover, we investigated the performance of HPED in low-resolution images. At the end, we 
compared the performance of HPED against other state-of-the-art results. 
 

 
Fig. 6. Example of images with different: a) noise variation, b) positional  

variation (misalignment), and c) resolution. 
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Performance under noise: To show the robustness of the proposed descriptor against noise 
perturbations, we tested its performance in a CK+ dataset with artificially added noise. For this 
purpose, we added random Gaussian noise with zero mean and standard deviations σ with the 
interval of (0.08 - 0.16) and (0.16 - 0.32) for each image of the dataset. Noisy sample images 
are given in Fig. 6 (a). We conducted a person-independent expression recognition for this 
noise-corrupted dataset and compared the results of HPED against other descriptors, including 
LBP [1], LDN [4], LDP [7], LPTP [8], PTP [9], HOG [12], and LDTP [13]. It is worth 
mentioning that we kept the parameters the same as stated in the respective works while 
generating the results for these descriptors. We present all the results in Table 1. Note that for 
the sake of comparison, we also provided results without adding noise in this table. For both of 
the cases, the proposed descriptor achieved higher results than other descriptors under 
consideration. It is important to observe that the performance gap between the proposed 
descriptor and other descriptors is quite large under noise. The reason for this is that HPED 
accumulates the histograms from a grid within a small number of bins, and the possibility of 
the code-value being distorted by the noise is lower compared to other descriptors, resulting in 
better accuracy.  
 

Table 1. Person-independent expression recognition results on CK+ dataset by varying noise  

   Descriptors 
Without 
 Noise 

Varying Noise 
0.08 - 0.16 0.16 - 0.32 

LBP 85.84 72.09 69.09 
LDP 88.07 78.28 57.44 
LDN 88.58 76.45 52.75 
LPTP 91.64 87.05 77.37 
PTP 91.03 88.96 82.16 
HOG 92.01 88.89 84.51 
LDTP 93.58 89.91 86.24 
HPED 93.74 91.12 86.93 

 
Performance under positional variation (misalignment): We evaluated the performance of 
HPED after distorting the alignment of the frontal face to test its robustness under a subtle 
registration error when detecting the frontal face. In practice, such positional variations of the 
frontal face are a very common issue that usually happens due to a face registration error 
(misalignment), where facial components (i.e., eye, nose, etc.) are not detected properly. Since 
the eye positions play an important role in cropping the face region, we add random noise with 
zero mean and standard deviations varying from 0.5 to 5 to the eye-positions at each 
expression image. This strategy artificially adds positional variations to the images. We 
utilized the ground-truth eye-position information of CK+ to perturb the position of the eyes, 
generating positional variations in the facial images. A sample position-varied (misaligned) 
image is provided in Fig. 6 (b). We now carried out person-independent recognition in these 
images for the descriptors under consideration, and the results are shown in Table 2. As shown, 
HPED achieves better accuracy than all these descriptors, demonstrating its efficacy under 
such positional variations. The main reason for this better performance is that HPED 
incorporates detailed spatial information using the smaller grids. Therefore, the micro-level 
positional change information is included more efficiently in HPED than other descriptors that 
use larger grids, resulting in higher accuracy. 
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Table 2. Person-independent expression recognition results on CK+ having position-varied 
(misaligned) facial images 

Descriptors LBP LDP LDN LPTP PTP HOG LDTP HPED 
Results  84.20 86.95 87.36 90.01 89.91 90.13 91.84 92.05 

 
Performance under low-resolution: In addition, we investigated the performance of HPED 
descriptors in different resolution images to test its comparative efficacy in such images, 
especially in the low-resolution images. Achieving better performance in low-resolution 
images is important since most surveillance systems and real-time video analysis systems deal 
with low-resolution video input. To test the performance, we generated four different sets of 
CK+ dataset images after varying the image resolution. We divided the images into 110 × 150, 
55 × 75, 36 × 48, and 27 × 37 resolutions, respectively, to generate four different CK+ 
image-sets. Fig. 6 (c) provides examples of an image at four different resolutions. As with the 
previous tests, we tested HPED against other descriptors including LBP, LDP, LDN, LPTP, 
PTP, HOG, and LDTP. Results presented in Table 3 show that the proposed HPED achieved 
higher accuracy than other descriptors, showing its efficiency at different image resolutions. 

 
Table 3. Person-independent expression recognition results on a CK+ dataset by varying image 

resolution 

Descriptors Varying Resolution 
110 × 150 55 × 75 36 × 48 27 × 37 

LBP 85.84 83.59 82.16 81.04 
LDP 88.07 86.54 85.73 81.75 
LDN 88.58 87.56 85.93 84.10 
LPTP 91.64 89.19 88.68 85.73 
PTP 91.03 90.32 89.09 85.50 
HOG 92.01 90.62 88.68 85.63 
LDTP 93.58 91.74 89.48 88.03 
HPED 93.74 93.02 90.06 88.54 

 
Performance against state-of-the-art results: We compared the performance of the 
proposed descriptor on a CK+ dataset for 7 classes against other state-of-the-art methods. In 
particular, we compared the performance of HPED against different appearance-based 
methods and deep learning based methods. Among the appearance-based methods, we 
considered LBP, LDP, LDN, PTP, HOG, LPQ, Gabor, and LDTP. Furthermore, we compared 
against a method that uses a manifold based sparse representation (MSR) [20] and approaches 
dealing with intra-class variations [21], [22]. It is important to note that we compared our 
results against some recent deep methods, including GoogLeNet [23], AlexNet [23], and the 
proposed network in [23]. Table 4 provides recognition accuracies of the previously 
mentioned methods against the proposed HPED on a CK+ dataset for 7 expression classes. 
Results presented in Table 4 show that the HPED descriptor performs better than the given 
local descriptors, except for the recently published LDTPactive [13] that utilizes selected active 
codes to improve the performance accuracy. Nevertheless, the proposed HPED achieves better 
accuracy than LDTP when no active code is used, which also indicates that the performance of 
the proposed method can be further improved with a similar feature-selection strategy. 
However, we consider this as a potential improvement, and leave it as a future endeavor. Note 
also that HPED considerably improves accuracies compared to the deep methods [23] without 
using additional training samples as done in the respective works [23]. This shows the efficacy 
of a proposed descriptor in achieving consistent performance without the use of such 
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additional data and computational effort. 
In this regard, we also note that some of the other state-of-the-art methods utilize temporal 

information in classifying the expression classes [15], [24], [25], [26], [27]. Since the 
proposed method uses static images to classify expression classes, we do not compare our 
methods against such methods to maintain fairness in the comparison.  

In addition, we provide the confusion matrix of HPED for 7-class CK+ images in Fig. 7. 
The confusion matrix shows that HPED achieves convincing recognition results for disgust, 
happy and surprise expression classes, where expressions like anger and contempt also show 
promising performance. However, fear and sadness show comparatively low recognition 
results, which perhaps happened due to some of the less distinctive images of these class. 

 
Table 4. Person-independent expression recognition results on CK+ dataset  

[Note: results with citations are from corresponding papers] 
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Fig. 7. Confusion matrix for CK+ dataset. 

 
 

Methods 7-class results (%) 
LBP 85.84 
LDP 88.07 
LDN 88.58 
LPTP 91.64 
PTP 91.03 
HOG 92.01 

LBP + SRC [21] 79.97 
LPQ + SRC [21] 80.78 

Gabor + SRC [21] 82.82 
MSR [20] 91.4 

SRC + ICV [22] 90.5 
Lee et al. [21] 92.34 

GoogLeNet [23] 85.71 
AlexNet [23] 85.87 

AlexNet + SVM [23] 86.83 
Wu et al. [23] 89.84 

LDTP [13] 93.58 
LDTPactive [13] 94.19 

HPED 93.74 
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FACES Results 
The FACES [16] dataset contains natural facial expressions of 171 subjects, including 58 
young (19-31 years old), 56 middle-aged (39-55 years old) and 57 old subjects (69-80 years 
old). A total of 2052 images are assigned into one of the basic six expressions (anger, disgust, 
fear, happiness, sadness, and neutrality). 
 

Table 5. Person-independent expression recognition results on FACES dataset 
 
 
 
 
 
 
 
 

 
 

 
Expression recognition results for all the FACES images are presented in the first column of 

Table 5, which shows that the HPED descriptor achieves better performance against the 
existing local descriptors. It is worth mentioning that expression-images of this dataset are 
divided into different age-groups. Thus, the higher result of the proposed descriptor in FACES 
demonstrates its efficiency under the images with age variations. Moreover, Caroppo et al. 
[28] shows that the expression images of older subjects are hard to detect as their facial traits 
exhibit less differentiation among different expressions. Hence, we conducted separate 
experiments for the given three age-groups, including young, middle-aged and old, to 
explicitly evaluate the performance of HPED in different age-groups. We provided the results 
in Table 5, where we also observed better accuracy of HPED than other descriptors in all the 
respective age-groups, which strongly demonstrates the efficacy of HPED in recognizing 
expressions under such age variations. 
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Fig. 8. Confusion matrix for FACES dataset. 

 
Fig. 8 shows a 6-class confusion matrix for the FACES dataset when considering images of 

all the age-groups. Sad expressions were confused with neutral expressions. We observed that 

Methods All ages Young Middle-age Old 
LBP 91.52 92.67 86.16 81.29 
LDP 89.57 91.38 88.09 80.70 
LDN 88.69 89.37 87.79 80.12 
LPTP 92.11 90.37 88.39 81.58 
PTP 91.42 93.10 89.58 84.36 
HOG 93.03 94.83 89.73 86.69 
LDTP 93.30 94.90 91.03 86.75 
HPED 93.62 95.55 91.82 87.28 
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some of the peak sad expressions showed fewer differences compared to the neutral image due 
to the different expression traits, which may contribute to this confusion. 

 
BU-3DFE Results 
 
The BU-3DFE [17] dataset consists of six prototype emotions depicted by 100 subjects where 
56% of images are from females and 44% are from males. Images of BU-3DFE are labeled 
with one of these expression labels: anger, disgust, fear, happiness, sadness, and surprise. 
Since the dataset images vary in age, ethnic, racial ancestries, and intensities of expressions 
(i.e., 4 different intensity levels), this dataset is considered to be a challenging one.  

The comparative performance is shown in Table 6, which demonstrates that variations of 
the BU-3DFE dataset play a significant role in feature extraction step, and therefore overall 
accuracies are much lower than the results of the above datasets. Nevertheless, the proposed 
HPED shows superior performance against other descriptors, which points to the efficacy of 
the proposed feature extraction scheme of HPED when applied to such a challenging dataset 
with large variations. Moreover, we provided the confusion matrix of HPED in Fig. 9. We 
observed that the fear class is most confused with all other expressions. The sad class is also 
confused with the other classes, especially with the anger class in BU-3DFE. One has to 
address these issues to achieve better performance, which we consider as a future endeavor. 
 

Table 6. Person-independent expression recognition results on BU-3DFE dataset 
[Note: results with citations are from corresponding papers] 
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Fig. 9. Confusion matrix for BU-3DFE dataset. 

 

Methods 6-class results (%) 
LBP 56.2 
LDP 61.3 
LDN 56.5 
LPTP 67.8 
PTP 66.88 
HOG 71.6 

Hu et al. [29] 66.5 
BDA/GMM [30] 68.28 
Tariq et al. [31] 68.3 

Moore et al. [32] 71.1 
LDTP [13] 71.3 

HPED 73.39 
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RaFD Results 
The Radboud Faces Databases (RaFD) [18] consists of eight expressions, including happy, sad, 
angry, surprise, disgust, fear, contemptuous and neutral. RaFD has images with 3 gaze 
directions and 5 face orientations. However, in our experiment, we used frontal face images 
with a frontal gaze direction.  
 

Table 7. Person-independent expression recognition results on RaFD dataset 
[Note: results with citations are from corresponding papers] 
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Fig. 10. Confusion matrix for RaFD dataset. 

 
We provided the recognition performance in Table 7, which shows that the proposed 

descriptor achieves higher accuracy than other methods in this dataset. Notice that the RaFD 
dataset contains images of people from different races. Hence, such higher performance can 
also be interpreted as the efficacy of HPED for race variations. Moreover, the confusion 
matrix for HPED is shown in Fig. 10 for the facial expression images in the RaFD dataset. As 
shown, HPED also demonstrates superior class separation in all eight expression classes. 

Methods 8-class results (%) 
LBP 93.46 
LDP 93.02 
LDN 92.90 
LPTP 92.53 
PTP 92.90 
HOG 94.15 

Gabor [33] 89.78 
Gabor + PCA [33] 88.80 

LGBPHS [33] 94.84 
LGBPHS + PCA [33] 92.56 

LDTP 94.24 
HPED 95.52 
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Fig. 11. Recognition results of HPED with different numbers of directions in the RaFD dataset. 

 
To this end, one may ask why only two directions were used, that is, why the primary and 

secondary directions are generated in the HPED descriptor. Therefore, we would like to show 
the rationale of using the secondary direction along with primary direction experimentally. For 
this purpose, we evaluated the performance of a HPED descriptor using n different directions. 
Therefore, we varied the number of directions (n) from 1 to 4 and generated HPED histograms 
for person-independent results, respectively. Here, n=1 denoted the generation of the HPED 
histogram using the top edge direction (primary direction) only. Similarly, n=2, 3, 4 denote 
generation of the histogram by concatenating the top 2, 3 and 4 edge directions, respectively. 
Experiments were conducted on a RaFD dataset, and the results are shown in Fig. 11, where 
we observe that the method performs better when considering two directions (primary and 
secondary). This can be explained by the fact that using just one direction considers the edge 
directional information only, and hence may miss the structural details of curvature and 
corner-like textures, where more directions are needed. Considering two directions is more 
meaningful in this regard, since the primary direction captures the major edge directional axis 
and the secondary direction can be utilized to capture such curvature information, as was also 
mentioned in recent research [34]. Moreover, considering three or four types of information 
can be useful to capture complex junction-like textures. Nevertheless, since facial images 
usually do not possess such complex textures, using more directional information may 
generate redundant information. This may create ambiguity in the texture representation, 
resulting in less accuracy, as shown in Fig. 11.  

5. Conclusion 
In this paper, we present a new descriptor, Histograms of Prominent Edge Directions (HPED), 
for the person-independent facial expression recognition task. The proposed HPED uses the 
histogram of top two prominent edge directions to represent the expression related changes in 
face images. Such coding schemes allow HPED to avoid sampling errors while preserving 
valuable spatial information. Compared to HOG, which uses primary edge directions only, 
HPED uses secondary direction information to take advantage of important texture 
information. Experiments on well-known datasets demonstrate that the proposed HPED works 
better than other descriptors in recognizing expressions in a person-independent environment. 
Moreover, we show that HPED achieves better performance against noise, positional 
variations, and low-resolution images, showing its overall efficacy in recognizing human 
expressions. However, the robustness of HPED under such conditions indicates that HPED 
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can be applied to recognize the “in-the-wild” expressions as well as spontaneous expressions, 
which we leave for future endeavors. 

References 
[1] C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition based on Local Binary 

Patterns: A comprehensive study,” Image and Vision Computing, vol. 27, no. 6, pp. 803-816, May 
2009. Article (CrossRef Link). 

[2] H. Hong, H. Neven, C. Von der Malsburg, “Online facial expression recognition based on 
personalized galleries,” in Proc. of IEEE International Conference on Automatic Face and Gesture 
Recognition, pp. 354-359, April 14-16, 1998. Article (CrossRef Link). 

[3] I. Kotsia and I. Pitas, “Facial expression recognition in image sequences using geometric 
deformation features and support vector machines,” IEEE transactions on image processing, 
vol.16, no. 1, pp. 172-87, January 2007. Article (CrossRef Link). 

[4] A. R. Rivera, J. A. R. Castillo, and O. Chae, “Local directional number pattern for face analysis: 
Face and expression recognition,” IEEE transactions on image processing, vol. 22, no.5, pp. 
1740-1752, May 2013. Article (CrossRef Link). 

[5] A. M. Martínez, A. C. Kak, “Pca versus lda,” IEEE transactions on pattern analysis and machine 
intelligence, vol. 23, no. 2, pp. 228-33, February 2001. Article (CrossRef Link). 

[6] K. Etemad, R. Chellappa, “Discriminant analysis for recognition of human face images”, JOSA A, 
vol. 14, no. 8, pp. 1724-33, August 1997. Article (CrossRef Link). 

[7] T. Jabid, Md. H. Kabir, and O. Chae, “Robust facial expression recognition based on local 
directional pattern,” ETRI J., vol. 32, no. 5, pp. 784-794, October 2010. Article (CrossRef Link). 

[8] A. R. Rivera, J. A. R. Castillo, and O. Chae, “Recognition of face expressions using local principal 
texture pattern,” in Proc. of IEEE International Conference on Image Processing (ICIP), pp. 
2613–2616, September 2012. Article (CrossRef Link). 

[9] M. T. B. Iqbal, B. Ryu, G. Song, and O. Chae, “Positional Ternary Pattern (PTP): An edge based 
image descriptor for human age recognition” in Proc. of IEEE International Conference on 
Consumer Electronics (ICCE), pp. 289-292, January 7-11, 2016. Article (CrossRef Link). 

[10] R. A. Kirsch, “Computer determination of the constituent structure of biological images,” 
Computers and biomedical research, vol. 4, no. 3, pp. 315–328, 1971. Article (CrossRef Link). 

[11] M. T. B. Iqbal, M. Shoyaib, B. Ryu, M. Abdullah-Al-Wadud, O. Chae, “Directional Age-Primitive 
Pattern (DAPP) for Human Age Group Recognition and Age Estimation,” IEEE Transactions on 
Information Forensics and Security, vol. 12, no. 11, pp. 2505 – 2517, November 2017.  
Article (CrossRef Link). 

[12] P. Carcagnì, M. Coco, M. Leo, C. Distante, “Facial expression recognition and histograms of 
oriented gradients: a comprehensive study,” SpringerPlus, vol. 4, no. 1, p. 645, December 2015. 
Article (CrossRef Link). 

[13] B. Ryu, A. R. Rivera, J. Kim, O. Chae, “Local directional ternary pattern for facial expression 
recognition,” IEEE Transactions on Image Processing, vol. 26, no. 12, pp. 6006-6018, December 
2017. Article (CrossRef Link). 

[14] G. S. Robinson, “Edge detection by compass gradient masks,” Computer graphics and image 
processing, vol. 6, no. 5, pp. 492-501, October 1977. Article (CrossRef Link). 

[15] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, “The Extended 
Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified 
expression,” in Proc. of IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition – Workshops, pp. 94-101, June 13-18, 2010. Article (CrossRef Link). 

[16] N. C. Ebner, M. Riediger, and U. Lindenberger, “FACES—A database of facial expressions in 
young, middle-aged, and older women and men: Development and validation,” Behavior Research 
Methods, vol. 42, no. 1, pp. 351–362, February 2010. Article (CrossRef Link). 

 
 

https://doi.org/10.1016/j.imavis.2008.08.005
https://doi.org/10.1109/AFGR.1998.670974
https://doi.org/10.1109/TIP.2006.884954
https://doi.org/10.1109/TIP.2012.2235848
https://doi.org/10.1109/34.908974
https://doi.org/10.1364/JOSAA.14.001724
https://doi.org/10.4218/etrij.10.1510.0132
https://doi.org/10.1109/ICIP.2012.6467433
https://doi.org/10.1109/ICCE.2016.7430617
https://doi.org/10.1016/0010-4809(71)90034-6
https://doi.org/10.1109/TIFS.2017.2695456
https://doi.org/10.1186/s40064-015-1427-3
https://doi.org/10.1109/TIP.2017.2726010
https://doi.org/10.1016/S0146-664X(77)80024-5
https://doi.org/10.1109/CVPRW.2010.5543262
https://doi.org/10.3758/BRM.42.1.351


6016                                      Makhmudkhujaev et al.: Person-Independent Facial Expression Recognition with 
Histograms of Prominent Edge Directions 

[17] L. Yin, X. Wei, Y. Sun, J. Wang, M. J. Rosato, “A 3D facial expression database for facial 
behavior research,” in Proc. of IEEE International Conference on Automatic Face and Gesture 
Recognition, pp. 211-216, April 2, 2006. Article (CrossRef Link). 

[18] O. Langner, R. Dotsch, G. Bijlstra, D. H. Wigboldus, S. T. Hawk, A. D. Van Knippenberg, 
“Presentation and validation of the Radboud Faces Database,” Cognition and Emotion, vol. 24, no. 
8, pp. 1377-1388, December 2010. Article (CrossRef Link). 

[19] C. Cortes, V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273-97, 
September 1995. Article (CrossRef Link). 

[20] R. Ptucha, G. Tsagkatakis, A. Savakis, “Manifold based sparse representation for robust 
expression recognition without neutral subtraction,” in Proc. of IEEE International Conference on 
Computer Vision Workshops (ICCV Workshops), pp. 2136-2143, November 6, 2011.  
Article (CrossRef Link). 

[21] S. H. Lee, W. J. Baddar, Y. M. Ro, “Collaborative expression representation using peak expression 
and intra class variation face images for practical subject-independent emotion recognition in 
videos,” Pattern Recognition, vol. 54, pp. 52-67, 2016. Article (CrossRef Link). 

[22] S. H. Lee, K. N. Plataniotis, Y. M. Ro, “Intra-class variation reduction using training expression 
images for sparse representation based facial expression recognition,” IEEE Transactions on 
Affective Computing, vol. 5, pp. 340-51, 2014. Article (CrossRef Link). 

[23] B. F. Wu and C. H. Lin, “Adaptive Feature Mapping for Customizing Deep Learning Based Facial 
Expression Recognition Model,” IEEE Access, vol.6, pp. 12451-12461, 2018.  
Article (CrossRef Link). 

[24] L. A. Jeni, D. Takacs and A. Lorincz, “High quality facial expression recognition in video streams 
using shape related information only,” in Proc. of IEEE International Conference on Computer 
Vision Workshops (ICCV Workshops), pp. 2168-2174, November 6, 2011.  
Article (CrossRef Link). 

[25] S. Yang, B. Bhanu, “Understanding discrete facial expressions in video using an emotion avatar 
image,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, 
pp. 980-92, August 2012. Article (CrossRef Link). 

[26] Z. Wang, S. Wang, Q. Ji, “Capturing complex spatio-temporal relations among facial muscles for 
facial expression recognition,” in Proc. of IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pp. 3422-3429, June 23, 2013. Article (CrossRef Link). 

[27] H. Jung, S. Lee, J. Yim, S. Park, J. Kim, “Joint fine-tuning in deep neural networks for facial 
expression recognition,” in Proc. of IEEE International Conference on Computer Vision (ICCV), 
pp. 2983-2991, December 7, 2015. Article (CrossRef Link). 

[28] A. Caroppo, A. Leone, P. Siciliano, “Facial Expression Recognition in Older Adults using Deep 
Machine Learning,” in Proc. of Third Italian Workshop on Artificial Intelligence for Ambient 
Assisted Living 2017, pp. 30-43, November 16-17, 2017.  

[29] Y. Hu, Z. Zeng, L. Yin, X. Wei, J. Tu, T.S. Huang, “A study of non-frontal-view facial expressions 
recognition,” in Proc. of International Conference on Pattern Recognition, pp. 1-4, December 8, 
2008. Article (CrossRef Link). 

[30] W. Zheng, H. Tang, Z. Lin, T.S. Huang, “Emotion recognition from arbitrary view facial images,” 
in Proc. of European Conference on Computer Vision, pp. 490-503, September 5, 2010.  
Article (CrossRef Link). 

[31] U. Tariq, T. S. Huang, “Features and fusion for expression recognition - A comparative analysis,” 
in Proc. of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 
pp. 146-152, June 16, 2012. Article (CrossRef Link). 

[32] S. Moore, R. Bowden, “Local binary patterns for multi-view facial expression recognition,” 
Computer Vision and Image Understanding, vol. 115, no. 4, pp. 541-58, April, 2011.  
Article (CrossRef Link). 

[33] Z. Zhang, G. Lu, J. Yan, H. Li, N. Sun, X. Li, P. R. Zhenjiang, “Compact local Gabor directional 
number pattern for facial expression recognition,” Turkish Journal of Electrical Engineering & 
Computer Sciences, vol. 26, no. 3, pp. 1236-1248, May 2018. Article (CrossRef Link). 

https://doi.org/10.1109/FGR.2006.6
https://doi.org/10.1080/02699930903485076
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/ICCVW.2011.6130512
https://doi.org/10.1016/j.patcog.2015.12.016
https://doi.org/10.1109/TAFFC.2014.2346515
https://doi.org/10.1109/ACCESS.2018.2805861
https://doi.org/10.1109/ICCVW.2011.6130516
https://doi.org/10.1109/TSMCB.2012.2192269
https://doi.org/10.1109/CVPR.2013.439
https://doi.org/10.1109/ICCV.2015.341
https://doi.org/10.1109/ICPR.2008.4761052
https://doi.org/10.1007/978-3-642-15567-3_36
https://doi.org/10.1109/CVPRW.2012.6239229
https://doi.org/10.1016/j.cviu.2010.12.001
http://dx.doi.org/doi:10.3906/elk-1711-2


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, December 2018                          6017 

[34] M. T. Iqbal, M. Shoyaib, B. Ryu, M. Abdullah-Al-Wadud, O. Chae, “Directional age-primitive 
pattern (DAPP) for human age group recognition and age estimation,” IEEE Transactions on 
Information Forensics and Security, vol. 12, no. 11, pp. 2505-2517, November 2017.  
Article (CrossRef Link). 

 

 
 

Farkhod Makhmudkhujaev received the B.S. degree in information technologies 
and the M.S. degree in applied informatics from Tashkent University of Information 
Technologies, Tashkent, Uzbekistan, in 2012, and 2014, respectively. He is currently 
pursuing the Ph.D. degree at the Department of Computer Science and Engineering, 
Kyung Hee University, Yongin-si, Republic of Korea. His current research interests 
include facial expression recognition, background modeling, object and scene detection, 
and image matching. 
 

 
 

Md Tauhid Bin Iqbal received his bachelor’s degree in Information 
Technology from the University of Dhaka in 2012. Currently, he is pursuing a 
combined M.S./Ph.D. degree at the Department of Computer Science and 
Engineering, Kyung Hee University, Yongin-si, Republic of Korea. His current 
research interests include object detection, expression recognition, combined age 
& gender recognition, and pattern recognition. 
 

 
 

Md Rifat Arefin received his bachelor’s degree in Information Technology 
from the University of Dhaka in 2016. Currently, he is pursuing a M.S. degree at 
the Department of Computer Science and Engineering, Kyung Hee University, 
Yongin-si, Republic of Korea. His current research interests include object 
detection, expression recognition, pattern recognition, background modeling, 
and deep learning. 
 

 
 

Byungyong Ryu received a B.S. degree in 2010 and a Ph.D. degree in 2017 in 
computer engineering from Kyung Hee University, Yongin-si, Republic of 
Korea, where he is currently working as a Post-doctoral fellow. His current 
research interests include facial expression, age, and gender recognition using 
face images, and image enhancement and medical image processing in dentistry, 
and deep learning. 
 

 

Oksam Chae (M92) received a B.S. degree in electronics engineering from Inha 
University, Incheon, South Korea, in 1977, and M.S. and Ph.D. degrees in electrical and 
computer engineering from Oklahoma State University, Stillwater, in 1982 and 1986, 
respectively. He was a Research Engineer with the Texas Instruments Image Processing 
Laboratory, Dallas, TX, from 1986 to 1988. Since 1988, he has been a Professor with the 
Department of Computer Science and Engineering, Kyung Hee University, Yongin-si, 
Republic of Korea. His current research interests include multimedia data processing 
environments, intrusion detection systems, sensor networks, and medical image 
processing in dentistry. Prof. Chae is a member of the SPIE, the Korean Electronic 
Society (KES), and the Institute of Electronics, Information and Communication 
Engineers. 
 

 

https://doi.org/10.1109/TIFS.2017.2695456

