• Title/Summary/Keyword: Image Edge

Search Result 2,464, Processing Time 0.032 seconds

A multisource image fusion method for multimodal pig-body feature detection

  • Zhong, Zhen;Wang, Minjuan;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4395-4412
    • /
    • 2020
  • The multisource image fusion has become an active topic in the last few years owing to its higher segmentation rate. To enhance the accuracy of multimodal pig-body feature segmentation, a multisource image fusion method was employed. Nevertheless, the conventional multisource image fusion methods can not extract superior contrast and abundant details of fused image. To superior segment shape feature and detect temperature feature, a new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. Firstly, the multisource images were resolved into a range of multiscale and multidirectional subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse NSST. Finally, the shape feature was extracted using automatic threshold algorithm and optimized using morphological operation. Nevertheless, the highest temperature of pig-body was gained in view of segmentation results. Experiments revealed that the presented fusion algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional algorithms and also enhanced efficiency.

Improved Minimum Spanning Tree based Image Segmentation with Guided Matting

  • Wang, Weixing;Tu, Angyan;Bergholm, Fredrik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.211-230
    • /
    • 2022
  • In image segmentation, for the condition that objects (targets) and background in an image are intertwined or their common boundaries are vague as well as their textures are similar, and the targets in images are greatly variable, the deep learning might be difficult to use. Hence, a new method based on graph theory and guided feathering is proposed. First, it uses a guided feathering algorithm to initially separate the objects from background roughly, then, the image is separated into two different images: foreground image and background image, subsequently, the two images are segmented accurately by using the improved graph-based algorithm respectively, and finally, the two segmented images are merged together as the final segmentation result. For the graph-based new algorithm, it is improved based on MST in three main aspects: (1) the differences between the functions of intra-regional and inter-regional; (2) the function of edge weight; and (3) re-merge mechanism after segmentation in graph mapping. Compared to the traditional algorithms such as region merging, ordinary MST and thresholding, the studied algorithm has the better segmentation accuracy and effect, therefore it has the significant superiority.

Frequency Mudularized Deinterlacing Using Neural Network (신경회로망을 이용한 주파수 모듈화된 deinterlacing)

  • 우동헌;엄일규;김유신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12C
    • /
    • pp.1250-1257
    • /
    • 2003
  • Generally images are classified into two regions: edge and flat region. While low frequency components are popular in the flat region, high frequency components are quite important in the edge region. Therefore, deinterlacing algorithm that considers the characteristic of each region can be more efficient. In this paper, an image is divided into edge region and flat region by the local variance. And then, for each region, frequency modularized neural network is assigned. Using this structure, each modularized neural network can learn only its region intensively and avoid the complexity of learning caused by the data of different region. Using the local AC data for the input of neural network can prevent the degradation of the performance of teaming due to the average intensity values of image that disturbs the effective learning. The proposed method shows the improved performance compared with previous algorithms in the simulation.

The Edge Detection of Image using the quantization FCNN with the variable template (가변 템플릿의 양자화 FCNN을 이용한 영상 에지 검출)

  • Choi, Seon-Kon;Byun, Oh-Sung;Lee, Cheul-Hee;Moon, Sung-Ryong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.144-151
    • /
    • 1998
  • In this paper, it is applied the analysis properties of mathematical morphology in order to process MIN/MAX operation on the basis of combination of predefined and weighted structuring element to FCNN having the structure of CNN combined with fuzzy logic between template and input/output. In this paper, as the fuzzy estimator is applied to the image including noise, thus it could be found the noise removal as well as the edge detection in the process of computer simulation. We could analyze and compare the results of edge detection using FCNN, CNN and median filter to which the erosion operation of morphology is applied. This paper could apply the static template and the variable template to FCNN using the quantization fuzzy function, in result we could confirm that the performance of FCNN got to improve in the process of computer simulation.

  • PDF

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.

A Method to Evaluate Rate of 'Soft-Hard' In a Drawing (그림의 '부드러운-딱딱한' 정도의 평가 방법)

  • Yoon, Seok-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3963-3970
    • /
    • 2009
  • This study proposes a method to evaluate the level of 'soft-hard' of color quantitatively by evaluating the shape with edge sharpness automatically and by evaluating color in the color image scale in a drawing in art therapy using a computer. The dependent variable is the rank for the color experts to rate the level of 'soft-hard'. The mean and standard deviation of Value(V), and Chroma(C), colors, main color, clusters, length of edge, and sharp line rate of edge are considered as the independent variable. The appropriate independent variables to explain the dependent variable are selected through the step wise regression analysis. The inter-rater reliability of two raters is checked and the validity of developed system is verified by the rank correlations coefficient between the ranks of rater's and system's. This system can be used to evaluate of the shape or color in a drawing objectively and quantitatively for art therapy assessment, and to give the useful information to the fashion, textile, interior industry as well as color psychology and art therapy.

A Real Time Deblocking Technique Using Adaptive Filtering in a Mobile Environment (모바일 환경에서 적응적인 필터링을 이용한 실시간 블록현상 제거 기법)

  • Yoo, Jae-Wook;Park, Dae-Hyun;Kim, Yoon
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.4
    • /
    • pp.77-86
    • /
    • 2010
  • In this paper, we propose a real time post-processing visual enhancement technique to reduce the blocking artifacts in block based DCT decoded image for mobile devices that have allocation of the restricted resource. In order to reduce the blocking artifacts effectively even while preserving the image edge to the utmost, the proposed algorithm uses the deblocking filtering or the directional filtering according to the edge detection of the each pixel. After it is discriminated that the pixel to apply the deblocking filtering belongs again to the monotonous area, the weighted average filter with the adaptive mask is applied for the pixel to remove the blocking artifacts. On the other hand, a new directional filter is utilized to get rid of staircase noise and preserve the original edge component. Experimental results show that the proposed algorithm produces better results than those of the conventional algorithms in both subjective and objective qualities.

  • PDF

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

A Study on Robot Arm Control System using Detection of Foot Movement (발 움직임 검출을 통한 로봇 팔 제어에 관한 연구)

  • Ji, H.;Lee, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2015
  • The system for controlling the robotic arm through the foot motion detection was implemented for the disabled who not free to use of the arm. In order to get an image on foot movement, two cameras were setup in front of both foot. After defining multiple regions of interest by using LabView-based Vision Assistant from acquired images, we could detect foot movement based on left/right and up/down edge detection within the left/right image area. After transferring control data which was obtained according to left/right and up/down edge detection numbers from two foot images of left/right sides through serial communication, control system was implemented to control 6-joint robotic arm into up/down and left/right direction by foot. As a result of experiment, we was able to get within 0.5 second reaction time and operational recognition rate of more 88%.

  • PDF

Finger Counting Algorithm in the Hand with Stuck Fingers (붙어 있는 손가락을 가진 손에서 손가락 개수 알고리즘)

  • Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1892-1897
    • /
    • 2017
  • This paper proposes a finger counting algorithm for a hand with stuck fingers. The proposed algorithm is based on the fact that straight line type shadows are inevitably generated between fingers. It divides the hand region into the thumb region and the four fingers region for effective shadow detection, and generates an edge image in each region. Projection curves are generated by appling a line detection and a projection technique to each edge image, and the peaks of the curves are detected as candidates for finger shadows. And then peaks due to finger shadows are extracted from them and counted. In the finger counting experiment on hand images expressing various shapes with stuck fingers, the counting success rate is from 83.3% to 100% according to the number of fingers, and 93.1% on the whole. It also shows that if hand images are generated under controlled conditions, the failure cases can be sufficiently improved.