• Title/Summary/Keyword: Image Clustering

Search Result 601, Processing Time 0.029 seconds

Similar Video Detection Method with Summarized Video Image and PCA (요약 비디오 영상과 PCA를 이용한 유사비디오 검출 기법)

  • Yoo, Jae-Man;Kim, Woo-Saeng
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.8
    • /
    • pp.1134-1141
    • /
    • 2005
  • With ever more popularity of video web-publishing, popular content is being compressed, reformatted and modified, resulting in excessive content duplication. Such overlapped data can cause problem of search speed and rate of searching. However, duplicated data on other site can provide alternatives while specific site cause problem. This paper proposes the efficient method, for retrieving. similar video data in large database. In this research we have used the method to compare summarized video image instead of the raw video data, and detected similar videos through clustering in that dimension feature vector through PCA(principle component analysis). We show that our proposed method is efficient and accurate through our experiment.

  • PDF

Hierarchical Nearest-Neighbor Method for Decision of Segment Fitness (세그먼트 적합성 판단을 위한 계층적 최근접 검색 기법)

  • Shin, Bok-Suk;Cha, Eui-Young;Lee, Im-Geun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.418-421
    • /
    • 2007
  • In this paper, we proposed a hierarchical nearest-neighbor searching method for deciding fitness of a clustered segment. It is difficult to distinguish the difference between correct spots and atypical noisy spots in footprint patterns. Therefore we could not completely remove unsuitable noisy spots from binarized image in image preprocessing stage or clustering stage. As a preprocessing stage for recognition of insect footprints, this method decides whether a segment is suitable or not, using degree of clustered segment fitness, and then unsuitable segments are eliminated from patterns. Removing unsuitable segments can improve performance of feature extraction for recognition of inset footprints.

  • PDF

DETECTION OF FRUITS ON NATURAL BACKGROUND

  • Limsiroratana, Somchai;Ikeda, Yoshio;Morio, Yoshinari
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.279-286
    • /
    • 2000
  • The objective of this research is to detect the papaya fruits on tree in an orchard. The detection of papaya on natural background is difficult because colors of fruits and background such as leaves are similarly green. We cannot separate it from leaves by color information. Therefore, this research will use shape information instead. First, we detect an interested object by detecting its boundary using edge detection technique. However, the edge detection will detect every objects boundary in the image. Therefore, shape description technique will be used to describe which one is the interested object boundary. The good shape description should be invariant in scaling, rotating, and translating. The successful concept is to use Fourier series, which is called "Fourier Descriptors". Elliptic Fourier Descriptors can completely represent any shape, which is selected to describe the shape of papaya. From the edge detection image, it takes a long time to match every boundary directly. The pre-processing task will reduce non-papaya edge to speed up matching time. The deformable template is used to optimize the matching. Then, clustering the similar shapes by the distance between each centroid, papaya can be completely detected from the background.

  • PDF

A Study on the Unsupervised Classification of Hyperion and ETM+ Data Using Spectral Angle and Unit Vector

  • Kim, Dae-Sung;Kim, Yong-Il;Yu, Ki-Yun
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Unsupervised classification is an important area of research in image processing because supervised classification has the disadvantages such as long task-training time and high cost and low objectivity in training information. This paper focuses on unsupervised classification, which can extract ground object information with the minimum 'Spectral Angle Distance' operation on be behalf of 'Spectral Euclidian Distance' in the clustering process. Unlike previous studies, our algorithm uses the unit vector, not the spectral distance, to compute the cluster mean, and the Single-Pass algorithm automatically determines the seed points. Atmospheric correction for more accurate results was adapted on the Hyperion data and the results were analyzed. We applied the algorithm to the Hyperion and ETM+ data and compared the results with K-Means and the former USAM algorithm. From the result, USAM classified the water and dark forest area well and gave more accurate results than K-Means, so we believe that the 'Spectral Angle' can be one of the most accurate classifiers of not only multispectral images but hyperspectral images. And also the unit vector can be an efficient technique for characterizing the Remote Sensing data.

  • PDF

Illumination-Robust Lane Detection Algorithm using CIEL *C*h (CIEL * C * h를 이용한 조도변화에 강인한 차선 인식 연구)

  • Pineda, Jose Angel;Cho, Yoon-Ji;Sohn, Kwang-hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.891-894
    • /
    • 2017
  • Lane detection algorithms became a key factor of advance driver assistance system (ADAS), since the rapidly increasing of high-technology in vehicles. However, one common problem of these algorithms is their performance's instability under various illumination conditions. We recognize a feasible complementation between image processing and color science to address the problem of lane marks detection on the road with different lighting conditions. We proposed a novel lane detection algorithm using the attributes of a uniform color space such as $CIEL^*C^*h$ with the implementation of image processing techniques, that lead to positive results. We applied at the final stage Clustering to make more accurate our lane mark estimation. The experimental results show the effectiveness of our method with detection rate of 91.80%. Moreover, the algorithm performs satisfactory with changes in illumination due to our process with lightness ($L^*$) and the color's property on $CIEL^*C^*h$.

Unified Approach to Path Planning Algorithm for SMT Inspection Machines Considering Inspection Delay Time (검사지연시간을 고려한 SMT 검사기의 통합적 경로 계획 알고리즘)

  • Lee, Chul-Hee;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.788-793
    • /
    • 2015
  • This paper proposes a path planning algorithm to reduce the inspection time of AOI (Automatic Optical Inspection) machines for SMT (Surface Mount Technology) in-line system. Since the field-of-view of the camera attached at the machine is much less than the entire inspection region of board, the inspection region should be clustered to many groups. The image acquisition time depends on the number of groups, and camera moving time depends on the sequence of visiting the groups. The acquired image is processed while the camera moves to the next position, but it may be delayed if the group includes many components to be inspected. The inspection delay has influence on the overall job time of the machine. In this paper, we newly considers the inspection delay time for path planning of the inspection machine. The unified approach using genetic algorithm is applied to generates the groups and visiting sequence simultaneously. The chromosome, crossover operator, and mutation operator is proposed to develop the genetic algorithm. The experimental results are presented to verify the usefulness of the proposed method.

MR Brain Image Segmentation Using Clustering Technique

  • Yoon, Ock-Kyung;Kim, Dong-Whee;Kim, Hyun-Soon;Park, Kil-Houm
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.450-453
    • /
    • 2000
  • In this paper, an automated segmentation algorithm is proposed for MR brain images using T1-weighted, T2-weighted, and PD images complementarily. The proposed segmentation algorithm is composed of 3 steps. In the first step, cerebrum images are extracted by putting a cerebrum mask upon the three input images. In the second step, outstanding clusters that represent inner tissues of the cerebrum are chosen among 3-dimensional (3D) clusters. 3D clusters are determined by intersecting densely distributed parts of 2D histogram in the 3D space formed with three optimal scale images. Optimal scale image best describes the shape of densely distributed parts of pixels in 2D histogram. In the final step, cerebrum images are segmented using FCM algorithm with it’s initial centroid value as the outstanding cluster’s centroid value. The proposed segmentation algorithm complements the defect of FCM algorithm, being influenced upon initial centroid, by calculating cluster’s centroid accurately And also can get better segmentation results from the proposed segmentation algorithm with multi spectral analysis than the results of single spectral analysis.

  • PDF

Calibration of 3D Coordinates in Orthogonal Stereo Vision (직교식 스테레오 비젼에서의 3차원 좌표 보정)

  • Yoon, Hee-Joo;Seo, Young-Wuk;Bae, Jung-Soo;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.504-507
    • /
    • 2005
  • In this paper, we propose a calibration technique of 3D coordinates using orthogonal stereo vision. First, we acquire front- image and upper- image from stereo cameras with real time and extract each coordinates of a moving object using differential operation and ART2 clustering algorithm. Then, we can generate 3D coordinates of that moving object through combining these two coordinates. Finally, we calibrate 3D coordinates using orthogonal stereo vision since 3D coordinates are not accurate due to perspective. Experimental results show that accurate 3D coordinates of a moving object can be generated by the proposed calibration technique.

  • PDF

Building of Database Retrieval System based on Knowledge (지식기반 데이터베이스 검색 시스템의 구축)

  • 박계각;서기열;임정빈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.450-453
    • /
    • 1999
  • In this paper, the cooperative retrieval system to interface between users and DB, image data and knowledge-based database(KDB), being formed in a linguistic knowledge expression, of system is presented. Conventional database retrieval systems provide the data only in case that the data exactly corresponding with users' requirements exist in these systems, but don't in other cases. In order to resolve this problem, if the data users require are not in existence, this system shows the data and image information which are approximate with knowledge-based database materialized by fuzzy clustering and allocation of linguistic label.

  • PDF

Fire detection in video surveillance and monitoring system using Hidden Markov Models (영상감시시스템에서 은닉마코프모델을 이용한 불검출 방법)

  • Zhu, Teng;Kim, Jeong-Hyun;Kang, Dong-Joong;Kim, Min-Sung;Lee, Ju-Seoup
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.35-38
    • /
    • 2009
  • The paper presents an effective method to detect fire in video surveillance and monitoring system. The main contribution of this work is that we successfully use the Hidden Markov Models in the process of detecting the fire with a few preprocessing steps. First, the moving pixels detected from image difference, the color values obtained from the fire flames, and their pixels clustering are applied to obtain the image regions labeled as fire candidates; secondly, utilizing massive training data, including fire videos and non-fire videos, creates the Hidden Markov Models of fire and non-fire, which are used to make the final decision that whether the frame of the real-time video has fire or not in both temporal and spatial analysis. Experimental results demonstrate that it is not only robust but also has a very low false alarm rate, furthermore, on the ground that the HMM training which takes up the most time of our whole procedure is off-line calculated, the real-time detection and alarm can be well implemented when compared with the other existing methods.