• Title/Summary/Keyword: Image Board

Search Result 581, Processing Time 0.021 seconds

Characteristics of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min;Yong, Sang-Soon;Woo, Sun-Hee;Lee, Sang-Gyu;Oh, Kyoung-Hwan;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.319-324
    • /
    • 1998
  • Ocean Scanning Multispectral Imager (OSMI) is a payload on the Korean Multi-purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring for the study of biological oceanography. The instrument images the ocean surface using a whisk-broom motion with a swath width of 800 km and a ground sample distance (GSD) of < 1 km over the entire field-of-view (FOV). The instrument is designed to have an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The instrument also performs sun calibration and dark calibration for on-board instrument calibration. The OSMI instrument is a multi-spectral imager covering the spectral range from 400 nm to 900 nm using a CCD Focal Plane Array (FPA). The ocean colors are monitored using 6 spectral channels that can be selected via ground commands after launch. The instrument performances are fully measured for 8 basic spectral bands centered at 412nm, 443nm, 490nm, 510nm, 555nm, 670nm, 765nm and 865nm during ground characterization of instrument. In addition to the ground calibration, the on-board calibration will also be used for the on-orbit band selection. The on-orbit band selection capability can provide great flexibility in ocean color monitoring.

  • PDF

Remote monitoring system of a vinyl house by web and Labview (Labview와 웹을 활용한 비닐하우스 원격감시 시스템)

  • Park, Sang-gug
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.725-728
    • /
    • 2009
  • This paper describes remote monitoring system for the various environments of a vinyl house, which was located in rural or outer of urban by use internet web connection system in a long distance office. We have constructed remote monitoring system by use a simple experimental model for the monitoring of various factors which need to operate common vinyl house. The experimental model includes temperature, humidity, smoke and infrared sensors for the measuring and AC 220V light bulb for the controlling in the USN system. Also, we have developed monitoring software by use NI Labview and communicate between PC and sensors through the DAQ-board, USN control board. We use CCD camera and grab board for the real time remote monitoring of wanted image in the house area. The computer server for remote connection is constructed in the local PC with Apache web server, PHP and MySQL ODBC. We construct internet communication system for the monitoring remotely the local environments of a vinyl house system.

  • PDF

Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography (콘빔CT 촬영 시 mAs의 변화에 따른 피부선량과 영상 품질에 관한 평가)

  • Ahn, Jong-Ho;Hong, Chae-Seon;Kim, Jin-Man;Jang, Jun-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose: Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. but imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Materials and Methods: Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in seperately H&N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. Results: The results of the measured skin dose are described in here. The skin dose of Head & Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Conclusion: Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low mAs technique.

  • PDF

The Investigation Image-guided Radiation Therapy of Bladder Cancer Patients (방광암 환자의 영상유도 방사선치료에 관한 고찰)

  • Bae, Seong-Soo;Bae, Sun-Myoung;Kim, Jin-San;Kang, Tae-Young;Back, Geum-Mun;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.39-43
    • /
    • 2012
  • Purpose: In hospital image-guided radiation therapy in patients with bladder cancer to enhance the reproducibility of the appropriate amount, depending on the patient's condition, and image-guided injection of saline system (On-Board Imager system, OBI, VARIAN, USA) three of the Cone-Beam CT dimensional matching (3D-3D matching) to be the treatment. In this study, the treatment of patients with bladder cancer at Cone-Beam CT image obtained through the analysis of the bones based matching and matching based on the bladder to learn about the differences, the bladder's volume change injected saline solution by looking at the bladder for the treatment of patients with a more appropriate image matching is to assess how the discussion. Materials and Methods: At our hospital from January 2009 to April 2010 admitted for radiation therapy patients, 7 patients with bladder cancer using a Folly catheter of residual urine in the bladder after removing the amount determined according to individual patient enough to inject saline CT-Sim was designed after the treatment plan. After that, using OBI before treatment to confirm position with Cone-Beam CT scan was physician in charge of matching was performed in all patients. CBCT images using a total of 45 bones, bladder, based on image matching and image matching based on the difference were analyzed. In addition, changes in bladder volume of Eclipse (version 8.0, VARIAN, USA) persuaded through. Results: Bones, one based image matching based on the bladder and re-matching the X axis is the difference between the average $3{\pm}2mm$, Y axis, $1.8{\pm}1.3mm$, Z-axis travel distance is $2.3{\pm}1.7mm$ and the overall $4.8{\pm}2.0mm$, respectively. The volume of the bladder compared to the baseline showed a difference of $4.03{\pm}3.97%$. Conclusion: Anatomical location and nature of the bladder due to internal movement of the bones, even after matching with the image of the bladder occurred in different locations. In addition, the volume of saline-filled bladder showed up the difference between the 4.03 percent, but matched in both images to be included in the planned volumes were able to confirm. Thus, after injection of saline into the bladder base by providing a more accurate image matching will be able to conduct therapy.

  • PDF

A Study on the Additional Radiation Exposure Dose of kV X-ray Based Image Guided Radiotherapy (kV X선 기반 영상유도방사선치료의 추가 피폭선량에 관한 연구)

  • Gha-Jung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1157-1164
    • /
    • 2023
  • This study measures the additional dose for each treatment area using kV X-ray based OBI (On-Board Imager) and CBCT (Cone-Beam CT), which have excellent spatial resolution and contrast, and evaluates the adequacy and stability of radiation management aspects of IGRT. The subjects of the experiment were examined with OBI and CBCT attached to a linear accelerator (Clinac IX), and ring-shaped Halcyon CBCT under imaging conditions for each treatment area, and the dose at the center was measured using an ion chamber. OBI single fraction dose was measured as 0.77 mGy in the head area, 3.04 mGy in the chest area, and 7.19 mGy in the pelvic area. The absorbed doses from the two devices, Clinac IX CBCT and Halcyon CBCT, were measured to be similar in the pelvic area, at 70.04 mGy and 70.45 mGy. and in chest CBCT, the Clinac IX absorbed dose (70.05 mGy) was higher than the Halcyon absorbed dose (21.01 mGy). The absorbed dose to the head area was also higher than that of Clinac IX (9.08 mGy) and Halcyon (5.44 mGy). In kV X-ray-based IGRT, additional radiation exposure due to photoelectric absorption may affect the overall volume of the treatment area, and caution is required.

A Basic Study on the Pitch-based Sound into Color Image Conversion (피치 기반 사운드-컬러이미지 변환에 관한 기초연구)

  • Kang, Kun-Woo;Kim, Sung-Ill
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.231-238
    • /
    • 2012
  • This study aims for building an application system of converting sound into color image based on synesthetic perception. As the major features of input sound, both scale and octave elements extracted from F0(fundamental frequency) were converted into both hue and intensity elements of HSI color model, respectively. In this paper, we used the fixed saturation value as 0.5. On the basis of color model conversion theory, the HSI color model was then converted into the RGB model, so that a color image of the BMP format was finally created. In experiments, the basic system was implemented on both software and hardware(TMS320C6713 DSP) platforms based on the proposed sound-color image conversion method. The results revealed that diverse color images with different hues and intensities were created depending on scales and octaves extracted from the F0 of input sound signals. The outputs on the hardware platform were also identical to those on the software platform.

  • PDF

Region of Interest Extraction Method and Hardware Implementation of Matrix Pattern Image (매트릭스 패턴 영상의 관심 영역 추출 방법 및 하드웨어 구현)

  • Cho, Hosang;Kim, Geun-Jun;Kang, Bongsoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.940-947
    • /
    • 2015
  • This paper presents the region of interest pattern image extraction method on a display printed matrix pattern. Proposed method can not use conventional method such as laser, ultrasonic waves and touch sensor. It searches feature point and rotation angle using luminance and pattern reliable feature points of input image, and then it extracts region of interest. In order to extract region of interest, we simulate proposed method using pattern image written various angles on display panel. The proposed method makes progress using the OpenCV and the window program, and was designed using Verilog-HDL and was verified through the FPGA Board(xc6vlx760) of Xilinx.

A Study on the Seam Tracking by Using Vision Sensor (비전센서를 이용한 용접선 추적에 관한 연구)

  • 배철오;김현수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1374-1380
    • /
    • 2002
  • Recently, the use of Robot increase little by little for the purpose of developing a welding quality and productivity in the welding part. It is more important to contact the seam for arc welding before moving a welding robot. There are two types of method to contact the seam namely contact and non-contact type largely. In this paper, image processing sensor(a kind of non-contact sensor) is concerned to track the seam by using laser diode and CCD camera. A structured laser diode's light illuminated on the weld groove and the reflected shape is introduced by CCD camera. The image board captures this image and software analyzes this image. The robot is moved and welded exactly as acquired image X-Y data is changed with robot's X-Y value. Also, most of seam tracking are considered by changing the program simply in case of the different weld groove of plane surface.

COMPARISON OF IMAGE REFORMATION USING PERSONAL COMPUTER WITH CT SCAN RECONSTRUCTION (CT 스캔 영상재구성과 개인용 컴퓨터를 이용한 영상 재형성과의 비교에 관한 연구)

  • Jung Gi-Hun;Kim Eun-Kyung;Kim Sang-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.2
    • /
    • pp.361-368
    • /
    • 1994
  • Radiographic planning is needed for implant placement in order to determine implant length, jaw bone volume, anatomical stucture and so on. Radiographic examination includes conventional radiography, conventional tomography and CT scan. The most accurate mesurement can be obtained from CT scan. For the cross-sectional view of mandible, CT scan reconstruction is generally needed. But the cross-sectional view of mandible can be reformed by personal computer. This study was performed to examine the clinical usefulness of reformed image using personal computer in comparison with CT scan reconstructed image. CT axial slices of 4 mandibles of 4 volunteers were used. Digital imaging system was composed of Macintosh Ⅱ ci computer, high resolution Sony XC-77 CCD camera, Quick Capture frame grabber board and 'NIH Image' program. Seven reconstructed cross-sectional images within CT machine(CT group) were obtained. And seven reformed cross-sectional images(PC group) after digitization of CT axial slices into the personal computer were obtained. PC group was compared with CT group in the objective and subjective aspects. The results were as follow: 1. Measurement of mandibular height & width in both group showed insignificant difference(P>0.05). 2. Subjective assessment of the mandibular canal in both group showed insignificant difference(P>0.05). 3. Image reformation using personal computer could provide panoramic view, which could not be obtained in CT scan reconstruction.

  • PDF

Real-time 3D Converting System using Stereoscopic Video (스테레오 비디오를 이용한 실시간 3차원 입체 변환 시스템)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.813-819
    • /
    • 2008
  • In this paper, we implemented a real-time system which displays 3-dimensional (3D) stereoscopic image with stereo camera. The system consists of a set of stereo camera, FPGA board, and 3D stereoscopic LCD. Two CMOS image sensor were used for the stereo camera. FPGA which processes video data was designed with Verilog-HDL, and it can accommodate various resolutional videos. The stereoscopic image is configured by two methods which are side-by-side and up-down image configuration. After the left and right images are converted to the type for the stereoscopic display, they are stored into SDRAM. When the next frame is inputted into FPGA from two CMOS image sensors, the previous video data is output to the DA converter for displaying it. From this pipeline operation, the real-time operation is possible. After the proposed system was implemented into hardware, we verified that it operated exactly.